当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrasonically actuated neural probes for reduced trauma and inflammation in mouse brain
Microsystems & Nanoengineering ( IF 7.3 ) Pub Date : 2022-11-02 , DOI: 10.1038/s41378-022-00438-3
Po-Cheng Chen 1 , Catharine G Young 2 , Chris B Schaffer 2 , Amit Lal 1
Affiliation  

Electrical neural recordings measured using direct electrical interfaces with neural tissue suffer from a short lifespan because the signal strength decreases over time. The inflammatory response to the inserted microprobe can create insulating tissue over the electrical interfaces, reducing the recorded signal below noise levels. One of the factors contributing to this inflammatory response is the tissue damage caused during probe insertion. Here, we explore the use of ultrasonic actuation of the neural probe during insertion to minimize tissue damage in mice. Silicon neural microprobes were designed and fabricated with integrated electrical recording sites and piezoelectric transducers. The microprobes were actuated at ultrasonic frequencies using integrated piezoelectric transducers. The microprobes were inserted into mouse brains under a glass window over the brain surface to image the tissue surrounding the probe using two-photon microscopy. The mechanical force required to penetrate the tissue was reduced by a factor of 2–3 when the microprobe was driven at ultrasonic frequencies. Tissue histology at the probe insertion site showed a reduced area of damage and decreased microglia counts with increasing ultrasonic actuation of the probes. Two-photon imaging of the microprobe over weeks demonstrated stabilization of the inflammatory response. Recording of electrical signals from neurons over time suggests that microprobes inserted using ultrasound have a higher signal-to-noise ratio over an extended time period.



中文翻译:

用于减少小鼠大脑创伤和炎症的超声驱动神经探针

使用与神经组织的直接电接口测量的电神经记录的寿命很短,因为信号强度会随着时间的推移而降低。对插入的微探针的炎症反应可以在电接口上形成绝缘组织,从而将记录的信号降低到噪声水平以下。导致这种炎症反应的因素之一是探针插入过程中造成的组织损伤。在这里,我们探索了在插入过程中使用超声波驱动神经探针来最大程度地减少小鼠的组织损伤。硅神经微探针的设计和制造具有集成的电记录位点和压电换能器。使用集成压电换能器以超声波频率驱动微探针。将微探针插入大脑表面上方的玻璃窗下的小鼠大脑,以使用双光子显微镜对探针周围的组织进行成像。当微探针以超声波频率驱动时,穿透组织所需的机械力减少了 2-3 倍。探头插入部位的组织组织学显示,随着探头超声驱动的增加,损伤面积减少,小胶质细胞数量减少。数周内微探针的双光子成像表明炎症反应稳定。随着时间的推移记录来自神经元的电信号表明,使用超声波插入的微探针在延长的时间段内具有更高的信噪比。当微探针以超声波频率驱动时,穿透组织所需的机械力减少了 2-3 倍。探头插入部位的组织组织学显示,随着探头超声驱动的增加,损伤面积减少,小胶质细胞数量减少。数周内微探针的双光子成像表明炎症反应稳定。随着时间的推移记录来自神经元的电信号表明,使用超声波插入的微探针在延长的时间段内具有更高的信噪比。当微探针以超声波频率驱动时,穿透组织所需的机械力减少了 2-3 倍。探头插入部位的组织组织学显示,随着探头超声驱动的增加,损伤面积减少,小胶质细胞数量减少。数周内微探针的双光子成像表明炎症反应稳定。随着时间的推移记录来自神经元的电信号表明,使用超声波插入的微探针在延长的时间段内具有更高的信噪比。探头插入部位的组织组织学显示,随着探头超声驱动的增加,损伤面积减少,小胶质细胞数量减少。数周内微探针的双光子成像表明炎症反应稳定。随着时间的推移记录来自神经元的电信号表明,使用超声波插入的微探针在延长的时间段内具有更高的信噪比。探头插入部位的组织组织学显示,随着探头超声驱动的增加,损伤面积减少,小胶质细胞数量减少。数周内微探针的双光子成像表明炎症反应稳定。随着时间的推移记录来自神经元的电信号表明,使用超声波插入的微探针在延长的时间段内具有更高的信噪比。

更新日期:2022-11-02
down
wechat
bug