当前位置: X-MOL 学术Int. J. Intell. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust watermarking based on blur-guided JND model for macrophotography images
International Journal of Intelligent Systems ( IF 5.0 ) Pub Date : 2022-10-29 , DOI: 10.1002/int.23093
Wenbo Wan 1 , Wenqian Shan 1 , Wenxiu Liu 1 , Hao Wang 1 , Zihan Diao 2 , Jiande Sun 1
Affiliation  

Macrophotography Images (MPIs) have recently emerged as an active topic due to the development of mobile phone camera technology. A large number of MPIs have been rapidly increasing in many rich visual services, such as smartphones or high-definition monitors. MPIs are often composed of sharp macroimage and blur background, which exhibit different perceptual properties that often lead to different just noticeable difference (JND) estimation. Inspired by this, we formulate the blur concealment (BC) as another factor to determine the total masking effect: the interaction is relatively straightforward with a limited masking effect in the sharp regions, and is complicated with a strong masking effect in the blur parts. Furthermore, texture and orientation adaption and color information weighting are separately incorporated into the contrast masking and color masking. Finally, considering both BC and masking effects, a novel robust watermarking framework based on the proposed blur-guided JND model for MPIs, targeting at further improving the MPIs copyright protection performance. Extensive experiments on MP2020 and Blur Detection data sets show that the applicability of the proposed JND model in the scenario of perceptually MPIs watermarking, and our proposed scheme can outperform the state-of-the-art watermarking schemes by providing better robustness performance at the uniform visual quality.

中文翻译:

基于模糊引导 JND 模型的宏观摄影图像鲁棒水印

由于手机相机技术的发展,宏观摄影图像 (MPI) 最近成为一个活跃的话题。许多丰富的视觉服务(例如智能手机或高清显示器)中的大量 MPI 正在迅速增加。MPI 通常由清晰的宏观图像和模糊的背景组成,它们表现出不同的感知特性,通常会导致不同的 JND 估计。受此启发,我们将模糊隐藏 (BC) 制定为另一个决定总掩蔽效果的因素:交互相对简单,在锐利区域的掩蔽效果有限,而在模糊部分则具有很强的掩蔽效果。此外,纹理和方向适应和颜色信息加权分别合并到对比度掩蔽和颜色掩蔽中。最后,考虑到 BC 和掩蔽效应,基于所提出的 MPI 模糊引导 JND 模型的新型鲁棒水印框架,旨在进一步提高 MPI 的版权保护性能。在 MP2020 和模糊检测数据集上进行的大量实验表明,所提出的 JND 模型在感知 MPI 水印场景中的适用性,我们提出的方案可以通过在统一的情况下提供更好的鲁棒性来优于最先进的水印方案视觉质量。旨在进一步提高 MPI 的版权保护绩效。在 MP2020 和模糊检测数据集上进行的大量实验表明,所提出的 JND 模型在感知 MPI 水印场景中的适用性,我们提出的方案可以通过在统一的情况下提供更好的鲁棒性来优于最先进的水印方案视觉质量。旨在进一步提高 MPI 的版权保护绩效。在 MP2020 和模糊检测数据集上进行的大量实验表明,所提出的 JND 模型在感知 MPI 水印场景中的适用性,我们提出的方案可以通过在统一的情况下提供更好的鲁棒性来优于最先进的水印方案视觉质量。
更新日期:2022-10-29
down
wechat
bug