当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ferrielectricity in the Archetypal Antiferroelectric, PbZrO3
Advanced Materials ( IF 27.4 ) Pub Date : 2022-10-31 , DOI: 10.1002/adma.202206541
Yulian Yao 1 , Aaron Naden 2, 3 , Mengkun Tian 4 , Sergey Lisenkov 5 , Zachary Beller 6 , Amit Kumar 2 , Josh Kacher 1 , Inna Ponomareva 5 , Nazanin Bassiri-Gharb 1, 6
Affiliation  

Antiferroelectric materials, where the transition between antipolar and polar phase is controlled by external electric fields, offer exceptional energy storage capacity with high efficiencies, giant electrocaloric effect, and superb electromechanical response. PbZrO3 is the first discovered and the archetypal antiferroelectric material. Nonetheless, substantial challenges in processing phase pure PbZrO3 have limited studies of the undoped composition, hindering understanding of the phase transitions in this material or unraveling the controversial origins of a low-field ferroelectric phase observed in lead zirconate thin films. Leveraging highly oriented PbZrO3 thin films, a room-temperature ferrielectric phase is observed in the absence of external electric fields, with modulations of amplitude and direction of the spontaneous polarization and large anisotropy for critical electric fields required for phase transition. The ferrielectric state observations are qualitatively consistent with theoretical predictions, and correlate with very high dielectric tunability, and ultrahigh strains (up to 1.1%). This work suggests a need for re-evaluation of the fundamental science of antiferroelectricity in this archetypal material.

中文翻译:

原型反铁电体 PbZrO3 中的铁电性

反铁电材料的反极性相和极性相之间的转变由外部电场控制,具有出色的储能能力、高效率、巨大的电热效应和出色的机电响应。PbZrO 3是最早发现的典型反铁电材料。尽管如此,处理纯 PbZrO 3相的巨大挑战限制了对未掺杂成分的研究,阻碍了对该材料中相变的理解,或揭示了在锆酸铅薄膜中观察到的低场铁电相的有争议的起源。利用高度定向的 PbZrO 3薄膜,在没有外部电场的情况下观察到室温亚铁电相,具有自发极化的幅度和方向的调制以及相变所需的临界电场的大各向异性。亚铁电态观察在质量上与理论预测一致,并且与非常高的介电可调性和超高应变(高达 1.1%)相关。这项工作表明需要重新评估这种原型材料中反铁电性的基础科学。
更新日期:2022-10-31
down
wechat
bug