使用市场上最大的问题来预测股票价值。由于其独特的特征和波动性,股票价格数据很难预测。在线新闻和评论反映了投资者对股票的情绪和想法,这可能有助于预测股票价格。大多数作者最近推荐了一种基于统计和环境测量的技术来预测机器学习或股票价格变化。这些模型难以应对不断变化的数据。我们提出了一种用于长期股市价格趋势预测 (LT-SMF) 的混合机器学习技术。我们采用改进的蝶形优化 (IBO) 从输入数据中去除伪影。缩放、极化和变化百分比用于发现有价值的品质。其次,褐飞虱优化 (BPO) 方法降低了数据维数以实现最佳特征选择。为了预测股市价格变化,使用了混合 FEL-DNN。使用 11 个股票市场指数和社交媒体数据,评估 LT-SMF 模型。仿真性能与均方误差、平均 bios 误差、平均绝对误差、均方根误差、准确度、精确度、召回率和 F 度量的最先进模型进行了比较。所提出的 FEL-DNN 分类器比当前最先进的 CNN3D、CNN3D - DR、LSTM - D、CNN3D + LSTM、CNN3D - D + LSTM 和 CNN3D - DR + LSTM 分类器的性能分别高出 38.67%、41.71%、社交媒体数据的准确率分别为 39.32%、36.04%、41.13% 和 43.43%。平均 bios 误差、平均绝对误差、均方根误差、准确度、精确度、召回率和 F-measure。所提出的 FEL-DNN 分类器比当前最先进的 CNN3D、CNN3D - DR、LSTM - D、CNN3D + LSTM、CNN3D - D + LSTM 和 CNN3D - DR + LSTM 分类器的性能分别高出 38.67%、41.71%、社交媒体数据的准确率分别为 39.32%、36.04%、41.13% 和 43.43%。平均 bios 误差、平均绝对误差、均方根误差、准确度、精确度、召回率和 F-measure。所提出的 FEL-DNN 分类器比当前最先进的 CNN3D、CNN3D - DR、LSTM - D、CNN3D + LSTM、CNN3D - D + LSTM 和 CNN3D - DR + LSTM 分类器的性能分别高出 38.67%、41.71%、社交媒体数据的准确率分别为 39.32%、36.04%、41.13% 和 43.43%。
"点击查看英文标题和摘要"
LT-SMF: long term stock market price trend prediction using optimal hybrid machine learning technique
Stock values are predicted using the market's biggest issues. Stock price data is hard to predict due to its distinct traits and volatility. Online news and comments reflect investor sentiment and thoughts on stocks, which may assist predict stock prices. Most authors lately recommended a statistical and environmental measurement-based technique for anticipating machine learning or stock price changes. These models struggle with changing data. We propose a hybrid machine learning technique for long-term stock market price trend prediction (LT-SMF). We employed improved butterfly optimization (IBO) to remove artefacts from input data. Scaling, polarising, and variation percentage are used to find valuable qualities. Second, a brown Planthopper optimization (BPO) approach reduces data dimensionality for optimal feature selection. To forecast stock market price variations, a hybrid FEL-DNN was utilized. Using 11 stock market indices and social media data, evaluate the LT-SMF model. Simulation performance was compared to state-of-the-art models for mean square error, mean bios error, mean absolute error, root mean square error, accuracy, precision, recall, and F-measure. The proposed FEL-DNN classifier outperforms the current state-of-the-art CNN3D, CNN3D − DR, LSTM − D, CNN3D + LSTM, CNN3D − D + LSTM, and CNN3D − DR + LSTM classifiers by 38.67%, 41.71%, 39.32%, 36.04%, 41.13%, and 43.43% respectively in terms of accuracy in the social media data.