International Journal of Oral Science ( IF 10.8 ) Pub Date : 2022-10-31 , DOI: 10.1038/s41368-022-00199-9 Yunfeng Lin 1 , Qian Li 2 , Lihua Wang 3 , Quanyi Guo 4 , Shuyun Liu 4 , Shihui Zhu 5 , Yu Sun 5 , Yujiang Fan 6 , Yong Sun 7 , Haihang Li 8 , Xudong Tian 8 , Delun Luo 9 , Sirong Shi 1
With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versatile functions. Especially promising nanostructures are tetrahedral framework nucleic acids (tFNAs), first proposed by Turberfield with the use of a one-step annealing approach. Benefiting from their various merits, such as simple synthesis, high reproducibility, structural stability, cellular internalization, tissue permeability, and editable functionality, tFNAs have been widely applied in the biomedical field as three-dimensional DNA nanomaterials. Surprisingly, tFNAs exhibit positive effects on cellular biological behaviors and tissue regeneration, which may be used to treat inflammatory and degenerative diseases. According to their intended application and carrying capacity, tFNAs could carry functional nucleic acids or therapeutic molecules through extended sequences, sticky-end hybridization, intercalation, and encapsulation based on the Watson and Crick principle. Additionally, dynamic tFNAs also have potential applications in controlled and targeted therapies. This review summarized the latest progress in pure/modified/dynamic tFNAs and demonstrated their regenerative medicine applications. These applications include promoting the regeneration of the bone, cartilage, nerve, skin, vasculature, or muscle and treating diseases such as bone defects, neurological disorders, joint-related inflammatory diseases, periodontitis, and immune diseases.
中文翻译:
四面体骨架核酸基纳米材料再生医学应用进展:专家共识推荐
随着 20 世纪 80 年代 DNA 纳米技术的出现,自组装 DNA 纳米结构由于其固有的生物相容性、无与伦比的可编程性和多功能性而在全世界引起了广泛关注。特别有前途的纳米结构是四面体框架核酸 (tFNA),它首先由 Turberfield 使用一步退火方法提出。tFNAs具有合成简单、重现性高、结构稳定、细胞内化、组织通透性和可编辑功能等优点,作为三维DNA纳米材料被广泛应用于生物医学领域。令人惊讶的是,tFNAs 对细胞生物学行为和组织再生表现出积极作用,可用于治疗炎症和退行性疾病。根据其预期应用和承载能力,tFNAs 可以通过扩展序列、粘端杂交、嵌入和基于 Watson 和 Crick 原理的封装来携带功能性核酸或治疗性分子。此外,动态 tFNA 在受控和靶向治疗中也有潜在的应用。这篇综述总结了纯/修饰/动态 tFNA 的最新进展,并展示了它们在再生医学中的应用。这些应用包括促进骨骼、软骨、神经、皮肤、脉管系统或肌肉的再生,以及治疗骨缺损、神经系统疾病、关节相关炎症性疾病、牙周炎和免疫疾病等疾病。基于沃森和克里克原理,tFNAs可以通过扩展序列、粘端杂交、嵌入和封装来携带功能性核酸或治疗分子。此外,动态 tFNA 在受控和靶向治疗中也有潜在的应用。这篇综述总结了纯/修饰/动态 tFNA 的最新进展,并展示了它们在再生医学中的应用。这些应用包括促进骨骼、软骨、神经、皮肤、脉管系统或肌肉的再生,以及治疗骨缺损、神经系统疾病、关节相关炎症性疾病、牙周炎和免疫疾病等疾病。基于沃森和克里克原理,tFNAs可以通过扩展序列、粘端杂交、嵌入和封装来携带功能性核酸或治疗分子。此外,动态 tFNA 在受控和靶向治疗中也有潜在的应用。这篇综述总结了纯/修饰/动态 tFNA 的最新进展,并展示了它们在再生医学中的应用。这些应用包括促进骨骼、软骨、神经、皮肤、脉管系统或肌肉的再生,以及治疗骨缺损、神经系统疾病、关节相关炎症性疾病、牙周炎和免疫疾病等疾病。动态 tFNA 在受控和靶向治疗中也有潜在的应用。这篇综述总结了纯/修饰/动态 tFNA 的最新进展,并展示了它们在再生医学中的应用。这些应用包括促进骨骼、软骨、神经、皮肤、脉管系统或肌肉的再生,以及治疗骨缺损、神经系统疾病、关节相关炎症性疾病、牙周炎和免疫疾病等疾病。动态 tFNA 在受控和靶向治疗中也有潜在的应用。这篇综述总结了纯/修饰/动态 tFNA 的最新进展,并展示了它们在再生医学中的应用。这些应用包括促进骨骼、软骨、神经、皮肤、脉管系统或肌肉的再生,以及治疗骨缺损、神经系统疾病、关节相关炎症性疾病、牙周炎和免疫疾病等疾病。