当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
First-Principles Study on the Electrocatalytic Oxygen Evolution Reaction on the (110) Surfaces of Layered Double Hydroxides
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2022-10-23 , DOI: 10.1021/acs.jpcc.2c07086 Caiwei Yue 1 , Luocong Wang 1 , Haohao Wang 1 , Jirui Du 1 , Ming Lei 1 , Min Pu 1
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2022-10-23 , DOI: 10.1021/acs.jpcc.2c07086 Caiwei Yue 1 , Luocong Wang 1 , Haohao Wang 1 , Jirui Du 1 , Ming Lei 1 , Min Pu 1
Affiliation
The electrochemical oxygen evolution reaction (OER) is a half-reaction of electrolytic water splitting for hydrogen production, which could provide a clean, efficient, and green strategy to construct a sustainable and renewable energy network. However, the OER is a four-electron oxidative reaction, which is a bottleneck of the water-splitting reaction with slow kinetics and a higher overpotential. In this paper, we investigated the performance of the OER of a series of layered double hydroxides (M32+N3+-LDHs, M2+ = Co2+, Ni2+, Zn2+, Mg2+, Ca2+, and N3+ = Co3+, Fe3+, Cr3+, Mn3+, Al3+) using the density functional theory (DFT) method, explored the mechanisms of OERs at three active sites (*M–M3N-LDH, *N–M3N-LDH, and *M(M)–M3N-LDH) on the (110) surfaces of LDHs, and constructed the volcano plot relationship between LDHs’ OER catalytic activities and corresponding ΔG*O–ΔG*OH (ΔG*O: the adsorption free energies of *O intermediates, ΔG*OH: the adsorption free energies of *OH intermediates). The catalyst has a better catalytic activity when the adsorption of *O on the surfaces of LDHs is moderate. The calculated results show that Co3Fe-LDH(110) with the *Co–Co3Fe-LDH(110) site, Ni3Fe-LDH(110) with the *Fe–Ni3Fe-LDH(110) site, and Ni3Mn-LDH(110) with *Mn–Ni3Mn-LDH(110) and *Ni(Ni)–Ni3Mn-LDH(110) sites own potential excellent OER electrocatalytic activities. In addition, the effects of the band gaps and d-band centers on the OER catalytic performance of LDHs were discussed, showing that the decrease of the band gaps of LDHs could promote electron transport and could enhance their catalytic activity. For LDH catalytic systems containing 3d electrons, the d-band center is strongly related to the adsorption of *O on surfaces. Thus, the catalytic activities on the (110) surfaces of these LDH systems have a volcano diagram relationship with the d-band centers. This work could provide a theoretical basis for screening the optimal two-dimensional LDH catalysts for the OER.
中文翻译:
层状双氢氧化物(110)表面电催化析氧反应的第一性原理研究,层状双氢氧化物(110)表面电催化析氧反应的第一性原理研究
电化学析氧反应(OER)是电解水分解制氢的半反应,可为构建可持续和可再生能源网络提供清洁、高效、绿色的策略。然而,OER是一种四电子氧化反应,是水分解反应的瓶颈,动力学缓慢,过电位较高。在本文中,我们研究了一系列层状双氢氧化物 (M 3 2+ N 3+ -LDHs, M 2+ = Co 2+ , Ni 2+ , Zn 2+ , Mg 2+ , Ca 2+ , N 3+ = Co 3+ , Fe3+ , Cr 3+ , Mn 3+ , Al 3+ ) 使用密度泛函理论 (DFT) 方法,探索了 OER 在三个活性位点 (*M–M 3 N-LDH, *N–M 3 N ) 的机理-LDH, 和 *M(M)-M 3 N-LDH) 在 LDHs 的 (110) 表面上,构建了 LDHs 的 OER 催化活性与对应的 Δ G *O -Δ G *OH (Δ G *O : *O 中间体的吸附自由能,Δ G *OH:*OH 中间体的吸附自由能)。当*O在LDHs表面的吸附适中时,催化剂具有较好的催化活性。计算结果表明,Co 3 Fe-LDH(110)与*Co-Co 3 Fe-LDH(110)位点,Ni 3 Fe-LDH(110)与*Fe-Ni 3 Fe-LDH(110)位点, 和 Ni 3 Mn-LDH(110) 与 *Mn–Ni 3 Mn-LDH(110) 和 *Ni(Ni)–Ni 3Mn-LDH(110) 位点具有潜在的优异 OER 电催化活性。此外,讨论了带隙和d带中心对LDHs OER催化性能的影响,表明LDHs带隙的减小可以促进电子传输并提高其催化活性。对于含有 3d 电子的 LDH 催化体系,d 带中心与 *O 在表面上的吸附密切相关。因此,这些LDH系统的(110)表面上的催化活性与d带中心具有火山图关系。该工作可为筛选用于OER的最佳二维LDH催化剂提供理论依据。,电化学析氧反应(OER)是电解水分解制氢的半反应,可为构建可持续和可再生能源网络提供清洁、高效、绿色的策略。然而,OER是一种四电子氧化反应,是水分解反应的瓶颈,动力学缓慢,过电位较高。在本文中,我们研究了一系列层状双氢氧化物 (M 3 2+ N 3+ -LDHs, M 2+ = Co 2+ , Ni 2+ , Zn 2+ , Mg 2+ , Ca 2+ , N 3+ = Co 3+ , Fe3+ , Cr 3+ , Mn 3+ , Al 3+ ) 使用密度泛函理论 (DFT) 方法,探索了 OER 在三个活性位点 (*M–M 3 N-LDH, *N–M 3 N ) 的机理-LDH, 和 *M(M)-M 3 N-LDH) 在 LDHs 的 (110) 表面上,构建了 LDHs 的 OER 催化活性与对应的 Δ G *O -Δ G *OH (Δ G *O : *O 中间体的吸附自由能,Δ G *OH:*OH 中间体的吸附自由能)。当*O在LDHs表面的吸附适中时,催化剂具有较好的催化活性。计算结果表明,Co 3 Fe-LDH(110)与*Co-Co 3 Fe-LDH(110)位点,Ni 3 Fe-LDH(110)与*Fe-Ni 3 Fe-LDH(110)位点, 和 Ni 3 Mn-LDH(110) 与 *Mn–Ni 3 Mn-LDH(110) 和 *Ni(Ni)–Ni 3Mn-LDH(110) 位点具有潜在的优异 OER 电催化活性。此外,讨论了带隙和d带中心对LDHs OER催化性能的影响,表明LDHs带隙的减小可以促进电子传输并提高其催化活性。对于含有 3d 电子的 LDH 催化体系,d 带中心与 *O 在表面上的吸附密切相关。因此,这些LDH系统的(110)表面上的催化活性与d带中心具有火山图关系。该工作可为筛选用于OER的最佳二维LDH催化剂提供理论依据。
更新日期:2022-10-23
中文翻译:
层状双氢氧化物(110)表面电催化析氧反应的第一性原理研究,层状双氢氧化物(110)表面电催化析氧反应的第一性原理研究
电化学析氧反应(OER)是电解水分解制氢的半反应,可为构建可持续和可再生能源网络提供清洁、高效、绿色的策略。然而,OER是一种四电子氧化反应,是水分解反应的瓶颈,动力学缓慢,过电位较高。在本文中,我们研究了一系列层状双氢氧化物 (M 3 2+ N 3+ -LDHs, M 2+ = Co 2+ , Ni 2+ , Zn 2+ , Mg 2+ , Ca 2+ , N 3+ = Co 3+ , Fe3+ , Cr 3+ , Mn 3+ , Al 3+ ) 使用密度泛函理论 (DFT) 方法,探索了 OER 在三个活性位点 (*M–M 3 N-LDH, *N–M 3 N ) 的机理-LDH, 和 *M(M)-M 3 N-LDH) 在 LDHs 的 (110) 表面上,构建了 LDHs 的 OER 催化活性与对应的 Δ G *O -Δ G *OH (Δ G *O : *O 中间体的吸附自由能,Δ G *OH:*OH 中间体的吸附自由能)。当*O在LDHs表面的吸附适中时,催化剂具有较好的催化活性。计算结果表明,Co 3 Fe-LDH(110)与*Co-Co 3 Fe-LDH(110)位点,Ni 3 Fe-LDH(110)与*Fe-Ni 3 Fe-LDH(110)位点, 和 Ni 3 Mn-LDH(110) 与 *Mn–Ni 3 Mn-LDH(110) 和 *Ni(Ni)–Ni 3Mn-LDH(110) 位点具有潜在的优异 OER 电催化活性。此外,讨论了带隙和d带中心对LDHs OER催化性能的影响,表明LDHs带隙的减小可以促进电子传输并提高其催化活性。对于含有 3d 电子的 LDH 催化体系,d 带中心与 *O 在表面上的吸附密切相关。因此,这些LDH系统的(110)表面上的催化活性与d带中心具有火山图关系。该工作可为筛选用于OER的最佳二维LDH催化剂提供理论依据。,电化学析氧反应(OER)是电解水分解制氢的半反应,可为构建可持续和可再生能源网络提供清洁、高效、绿色的策略。然而,OER是一种四电子氧化反应,是水分解反应的瓶颈,动力学缓慢,过电位较高。在本文中,我们研究了一系列层状双氢氧化物 (M 3 2+ N 3+ -LDHs, M 2+ = Co 2+ , Ni 2+ , Zn 2+ , Mg 2+ , Ca 2+ , N 3+ = Co 3+ , Fe3+ , Cr 3+ , Mn 3+ , Al 3+ ) 使用密度泛函理论 (DFT) 方法,探索了 OER 在三个活性位点 (*M–M 3 N-LDH, *N–M 3 N ) 的机理-LDH, 和 *M(M)-M 3 N-LDH) 在 LDHs 的 (110) 表面上,构建了 LDHs 的 OER 催化活性与对应的 Δ G *O -Δ G *OH (Δ G *O : *O 中间体的吸附自由能,Δ G *OH:*OH 中间体的吸附自由能)。当*O在LDHs表面的吸附适中时,催化剂具有较好的催化活性。计算结果表明,Co 3 Fe-LDH(110)与*Co-Co 3 Fe-LDH(110)位点,Ni 3 Fe-LDH(110)与*Fe-Ni 3 Fe-LDH(110)位点, 和 Ni 3 Mn-LDH(110) 与 *Mn–Ni 3 Mn-LDH(110) 和 *Ni(Ni)–Ni 3Mn-LDH(110) 位点具有潜在的优异 OER 电催化活性。此外,讨论了带隙和d带中心对LDHs OER催化性能的影响,表明LDHs带隙的减小可以促进电子传输并提高其催化活性。对于含有 3d 电子的 LDH 催化体系,d 带中心与 *O 在表面上的吸附密切相关。因此,这些LDH系统的(110)表面上的催化活性与d带中心具有火山图关系。该工作可为筛选用于OER的最佳二维LDH催化剂提供理论依据。