Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-10-13 , DOI: 10.1016/j.cej.2022.139736 Yu Zhang , Dan Sun , Yixun Wang , Xiaoqi Liu , Hongman Sun , Tonghui Cai , Xuejin Li , Han Hu , Xiaoyun Zhang , Wei Xing , Zifeng Yan
Transition metal oxides are highly promising cathode materials in rechargeable Zn-based batteries owing to their low cost, high theoretical capacity and good reversibility. Nevertheless, intrinsically low conductivity and sluggish redox reaction kinetics normally result in their inferior specific capacity and poor rate capability, which critically constrains the practical performance of Zn-based batteries. Herein, an ultrafast and controllable electrochemical activation (EA) process is developed to effectively enhance the electrochemical performance of NiCo2O4 cathode. Systematic studies reveal EA process triggers in situ reconstruction of NiCo2O4 lattice by weakening the coordination of Co-O bonds, resulting in the formation of abundant oxygen vacancies (octahedral Co2+). These oxygen vacancies increase the charge carrier density and endow the superficial metallic active sites with higher electrochemical activity, which synergistically accelerates the electrochemical reaction kinetics. The oxygen-deficient NiCo2O4 exhibits a remarkable capacity of 418.9 mAh/g at 1 A/g, which is nearly 5-fold higher than that of pristine NiCo2O4. Furthermore, the oxygen-deficient NiCo2O4//Zn battery presents an extremely high energy density (682.4 Wh kg−1) and excellent power density (50.8 kW kg−1), surpassing most of the reported aqueous rechargeable batteries. This work provides a facile and effective vacancy modulation strategy for the development of advanced materials utilized in energy and catalysis fields.
中文翻译:
NiCo2O4正极的电化学诱导空位调制对高性能水系锌基电池的影响
过渡金属氧化物因其低成本、高理论容量和良好的可逆性而成为可充电锌基电池中极具前景的正极材料。然而,固有的低电导率和缓慢的氧化还原反应动力学通常会导致其较差的比容量和较差的倍率性能,这严重限制了锌基电池的实际性能。在此,开发了一种超快可控的电化学活化(EA)工艺,以有效提高NiCo 2 O 4正极的电化学性能。系统研究揭示了 EA 过程触发了 NiCo 2 O 4的原位重建通过削弱Co-O键的配位,导致形成丰富的氧空位(八面体Co 2+)。这些氧空位增加了电荷载流子密度并赋予表面金属活性位点更高的电化学活性,从而协同加速电化学反应动力学。缺氧 NiCo 2 O 4在 1 A/g 时表现出 418.9 mAh/g 的显着容量,是原始 NiCo 2 O 4的近 5 倍。此外,缺氧NiCo 2 O 4 //Zn电池具有极高的能量密度(682.4 Wh kg -1)和出色的功率密度(50.8 kW kg -1),超过了大多数已报道的水性可充电电池。这项工作为开发用于能源和催化领域的先进材料提供了一种简便有效的空位调制策略。