当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transcriptome-wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits
Nature Communications ( IF 14.7 ) Pub Date : 2022-10-21 , DOI: 10.1038/s41467-022-33724-9
Andrew D Grotzinger 1, 2 , Javier de la Fuente 3, 4 , Gail Davies 5, 6 , Michel G Nivard 7 , Elliot M Tucker-Drob 3, 4
Affiliation  

Functional genomic methods are needed that consider multiple genetically correlated traits. Here we develop and validate Transcriptome-wide Structural Equation Modeling (T-SEM), a multivariate method for studying the effects of tissue-specific gene expression across genetically overlapping traits. T-SEM allows for modeling effects on broad dimensions spanning constellations of traits, while safeguarding against false positives that can arise when effects of gene expression are specific to a subset of traits. We apply T-SEM to investigate the biological mechanisms shared across seven distinct cognitive traits (N = 11,263–331,679), as indexed by a general dimension of genetic sharing (g). We identify 184 genes whose tissue-specific expression is associated with g, including 10 genes not identified in univariate analysis for the individual cognitive traits for any tissue type, and three genes whose expression explained a significant portion of the genetic sharing across g and different subclusters of psychiatric disorders. We go on to apply Stratified Genomic SEM to identify enrichment for g within 28 functional categories. This includes categories indexing the intersection of protein-truncating variant intolerant (PI) genes and specific neuronal cell types, which we also find to be enriched for the genetic covariance between g and a psychotic disorders factor.



中文翻译:


全转录组和分层基因组结构方程模型可识别不同认知特征之间共享的神经生物学途径



需要考虑多种遗传相关性状的功能基因组方法。在这里,我们开发并验证了全转录组结构方程模型(T-SEM),这是一种多变量方法,用于研究跨遗传重叠性状的组织特异性基因表达的影响。 T-SEM 允许对跨越性状群的广泛维度的影响进行建模,同时防止当基因表达的影响特定于性状子集时可能出现的误报。我们应用 T-SEM 来研究七种不同认知特征 ( N = 11,263–331,679) 共享的生物学机制,如遗传共享的一般维度 (g) 所索引。我们鉴定了 184 个其组织特异性表达与g相关的基因,其中包括在任何组织类型的个体认知特征的单变量分析中未鉴定的 10 个基因,以及其表达解释了g和不同亚簇之间遗传共享的重要部分的 3 个基因。的精神疾病。我们继续应用分层基因组 SEM 来识别 28 个功能类别中g的富集。这包括索引蛋白质截短变异不耐受(PI)基因和特定神经元细胞类型交叉的类别,我们还发现这些类别因g和精神障碍因素之间的遗传协方差而丰富。

更新日期:2022-10-21
down
wechat
bug