当前位置:
X-MOL 学术
›
Commun. Number Theory Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Orthosymplectic Satake equivalence
Communications in Number Theory and Physics ( IF 1.2 ) Pub Date : 2022-10-21 , DOI: 10.4310/cntp.2022.v16.n4.a2 Alexander Braverman 1 , Michael Finkelberg 2 , Roman Travkin 3
Communications in Number Theory and Physics ( IF 1.2 ) Pub Date : 2022-10-21 , DOI: 10.4310/cntp.2022.v16.n4.a2 Alexander Braverman 1 , Michael Finkelberg 2 , Roman Travkin 3
Affiliation
This is a companion paper of [BFGT]. We prove an equivalence relating representations of a degenerate orthosymplectic supergroup with the category of $\mathrm{SO}(N-1,\mathbb{C} [\![t]\!])$-equivariant perverse sheaves on the affine Grassmannian of $\mathrm{SO}_N$. We explain how this equivalence fits into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.
中文翻译:
正交辛佐竹等价
这是 [ BFGT ] 的配套论文。我们证明了在仿射 Grassmannian 上具有 $\mathrm{SO}(N-1,\mathbb{C} [\![t]\!])$-等变反常滑轮范畴的简并正交辛超群的等价关系$\mathrm{SO}_N$。我们解释了这种等价性如何适应 Gaiotto 和 Ben-Zvi、Sakellaridis 和 Venkatesh 的更一般的猜想框架。
更新日期:2022-10-21
中文翻译:
正交辛佐竹等价
这是 [ BFGT ] 的配套论文。我们证明了在仿射 Grassmannian 上具有 $\mathrm{SO}(N-1,\mathbb{C} [\![t]\!])$-等变反常滑轮范畴的简并正交辛超群的等价关系$\mathrm{SO}_N$。我们解释了这种等价性如何适应 Gaiotto 和 Ben-Zvi、Sakellaridis 和 Venkatesh 的更一般的猜想框架。