当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solvent-Assisted Hopping Mechanism Enables Ultrafast Charging of Lithium-Ion Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2022-10-18 , DOI: 10.1021/acsenergylett.2c02240
Xiaoteng Huang 1, 2 , Ruhong Li 1 , Chuangchao Sun 1 , Haikuo Zhang 1 , Shuoqing Zhang 1 , Ling Lv 1 , Yiqiang Huang 1 , Liwu Fan 3 , Lixin Chen 1, 4 , Malachi Noked 5 , Xiulin Fan 1
Affiliation  

Fast charging is regarded as one of the most coveted technologies for commercial Li-ion batteries (LIBs), but the lack of suitable electrolytes with sufficient ionic conductivity and effective passivation properties hinders its development. Herein, we designed a mixed-solvent electrolyte (1 M LiPF6 in fluoroethylene carbonate/acetonitrile, FEC/AN, 7/3 by vol.) to overcome these two limitations by achieving an FEC-dominated solvation structure and an AN-rich environment. The specific AN-assisted Li+ hopping transport behavior shortens the Li+ diffusion time, doubling the ionic conductivity to 12 mS cm–1, thus endowing the graphite anode with >300 mAh g–1 at 20C and reversible (de)intercalation over a wide temperature range (from −20 to +60 °C). Furthermore, the designed electrolyte triples the capacity of the 1 Ah graphite||LiNi0.8Mn0.1Co0.1O2 (NMC811) pouch cells at 8C in comparison with the commercial electrolyte. The solvent-assisted hopping mechanism maximizes the fast-charging capability of the electrolytes, which motivates further research toward viable next-generation high-energy LIBs.

中文翻译:

溶剂辅助跳跃机制实现锂离子电池的超快充电

快速充电被认为是商用锂离子电池(LIB)最令人垂涎​​的技术之一,但缺乏具有足够离子电导率和有效钝化性能的合适电解质阻碍了其发展。在此,我们设计了一种混合溶剂电解质(1 M LiPF 6在氟代碳酸亚乙酯/乙腈中,FEC/AN,体积比为 7/3),通过实现 FEC 主导的溶剂化结构和富含 AN 的环境来克服这两个限制。 . 特定的 AN 辅助 Li +跳跃传输行为缩短了 Li +扩散时间,使离子电导率翻倍至 12 mS cm -1,从而赋予石墨负极 >300 mAh g -1在 20C 和宽温度范围(从 -20 到 +60°C)内可逆(去)嵌入。此外,与商用电解液相比,设计的电解液在 8C 温度下使 1 Ah 石墨||LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811) 软包电池的容量增加了三倍。溶剂辅助跳跃机制最大限度地提高了电解质的快速充电能力,这推动了对可行的下一代高能锂离子电池的进一步研究。
更新日期:2022-10-18
down
wechat
bug