当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Temperature Zero Thermal Expansion in HfFe2+δ from Added Ferromagnetic Paths
Chemistry of Materials ( IF 7.2 ) Pub Date : 2022-10-17 , DOI: 10.1021/acs.chemmater.2c01732
Meng Xu 1 , Yuzhu Song 1 , Yuanji Xu 2 , Qiang Sun 3 , Feixiang Long 1 , Naike Shi 1 , Yongqiang Qiao 3 , Chang Zhou 4 , Yang Ren 5 , Jun Chen 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2022-10-17 , DOI: 10.1021/acs.chemmater.2c01732
Meng Xu 1 , Yuzhu Song 1 , Yuanji Xu 2 , Qiang Sun 3 , Feixiang Long 1 , Naike Shi 1 , Yongqiang Qiao 3 , Chang Zhou 4 , Yang Ren 5 , Jun Chen 1
Affiliation
![]() |
Deformation caused due to the thermal expansion of a material at high temperatures impairs the functioning of the device. Hence, high-temperature zero thermal expansion (ZTE) compounds are widely used in many high-precision devices. However, the domination of magnetic behavior over the thermal expansion of magnetic compounds makes it difficult to display ZTE at high temperatures. Herein, we report a high-temperature ZTE in a Fe-rich HfFe2+δ compound, whose ZTE operating temperature could reach 583 K, the highest temperature reached by ZTE metal-based compounds. Synchrotron X-ray diffractometry (SXRD), neutron powder diffractometry, Mössbauer spectroscopy, first-principle calculations, and macroscopic magnetic measurements revealed that the additional Fe atoms occupy the Hf sites and introduced extra ferromagnetic exchange interaction paths with the neighboring Fe atoms, thereby enhancing the magnetic transition temperature and the ZTE temperature region. Moreover, it was experimentally shown that the generation of ZTE by HfFe2.5 was due to the mutual cancellation of lattice shrinkage caused by the transformation of magnetic moments of Fe from ordered to disordered state and lattice expansion caused by lattice vibration. This study not only reports a high-temperature ZTE material but also provides an unusual method to modulate the magnetic systems to obtain high-temperature ZTE compounds.
中文翻译:
附加铁磁路径导致的 HfFe2+δ 高温零热膨胀
由于材料在高温下的热膨胀引起的变形会损害设备的功能。因此,高温零热膨胀 (ZTE) 化合物广泛用于许多高精度设备中。然而,磁性化合物的热膨胀对磁性行为的支配使得在高温下显示中兴通讯变得困难。在此,我们报道了富铁 HfFe 2+δ中的高温 ZTE化合物,其中兴通讯的工作温度可以达到583 K,是中兴通讯金属基化合物达到的最高温度。同步加速器 X 射线衍射 (SXRD)、中子粉末衍射、穆斯堡尔光谱、第一性原理计算和宏观磁测量表明,额外的 Fe 原子占据 Hf 位点并引入了与相邻 Fe 原子的额外铁磁交换相互作用路径,从而增强磁转变温度和中兴温度区域。此外,实验表明,HfFe 2.5生成 ZTE是由于Fe的磁矩从有序状态转变为无序状态引起的晶格收缩和晶格振动引起的晶格膨胀相互抵消。该研究不仅报道了一种高温 ZTE 材料,还提供了一种不寻常的方法来调制磁系统以获得高温 ZTE 化合物。
更新日期:2022-10-17
中文翻译:

附加铁磁路径导致的 HfFe2+δ 高温零热膨胀
由于材料在高温下的热膨胀引起的变形会损害设备的功能。因此,高温零热膨胀 (ZTE) 化合物广泛用于许多高精度设备中。然而,磁性化合物的热膨胀对磁性行为的支配使得在高温下显示中兴通讯变得困难。在此,我们报道了富铁 HfFe 2+δ中的高温 ZTE化合物,其中兴通讯的工作温度可以达到583 K,是中兴通讯金属基化合物达到的最高温度。同步加速器 X 射线衍射 (SXRD)、中子粉末衍射、穆斯堡尔光谱、第一性原理计算和宏观磁测量表明,额外的 Fe 原子占据 Hf 位点并引入了与相邻 Fe 原子的额外铁磁交换相互作用路径,从而增强磁转变温度和中兴温度区域。此外,实验表明,HfFe 2.5生成 ZTE是由于Fe的磁矩从有序状态转变为无序状态引起的晶格收缩和晶格振动引起的晶格膨胀相互抵消。该研究不仅报道了一种高温 ZTE 材料,还提供了一种不寻常的方法来调制磁系统以获得高温 ZTE 化合物。
