当前位置:
X-MOL 学术
›
Int. J. Intell. Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Machine learning algorithms for smart and intelligent healthcare system in Society 5.0
International Journal of Intelligent Systems ( IF 5.0 ) Pub Date : 2022-10-17 , DOI: 10.1002/int.23061 Ikhlas Fuad Zamzami, Kuldeep Pathoee, Brij B. Gupta, Anupama Mishra, Deepesh Rawat, Wadee Alhalabi
International Journal of Intelligent Systems ( IF 5.0 ) Pub Date : 2022-10-17 , DOI: 10.1002/int.23061 Ikhlas Fuad Zamzami, Kuldeep Pathoee, Brij B. Gupta, Anupama Mishra, Deepesh Rawat, Wadee Alhalabi
The pandemic has shown us that it is quite important to keep track record our health digitally. And at the same time, it also showed us the great potential of Instruments like wearable observing gadgets, video conferences, and even talk bots driven by artificial intelligence (AI) can provide good care from remotely. Real time data collected from different health care devices of cases across globe played an important role in combatting the virus and also help in tracking its progress. The evolution of biomedical imaging techniques, incorporated sensors, and machine learning (ML) in recent years has led in various health benefits. Medical care and biomedical sciences have become information science fields, with a solid requirement for refined information mining techniques to remove the information from the accessible data. Biomedical information contains a few difficulties in information investigation, including high dimensionality, class irregularity, and low quantities of tests. AI is a subfield of AI and computer science which centric the utilization of information and calculations to impersonate the way that people learn, steadily further developing its accuracy. ML is an essential element of the rapidly growing area of information science. Calculations are created using measurable procedures to make characterizations or forecasts, exposing vital experiences inside information mining operations. In this chapter, we explain and compare the different algorithms of ML which could be helpful in detecting different disease at earlier stage. We summarize the algorithms and different steps involved in ML to extract information for betterment of the society which is already exposed to the world of data.
中文翻译:
5.0社会智能医疗系统的机器学习算法
大流行向我们表明,以数字方式记录我们的健康状况非常重要。同时,它也向我们展示了可穿戴观察设备、视频会议,甚至由人工智能 (AI) 驱动的谈话机器人等仪器的巨大潜力,可以提供远程良好的护理。从全球不同医疗设备收集的病例实时数据在抗击病毒方面发挥了重要作用,也有助于跟踪其进展。近年来,生物医学成像技术、集成传感器和机器学习 (ML) 的发展带来了各种健康益处。医疗保健和生物医学科学已成为信息科学领域,对精细的信息挖掘技术提出了坚实的要求,以从可访问的数据中删除信息。生物医学信息存在维度高、类别不规则、检测量低等信息调查难点。人工智能是人工智能和计算机科学的一个子领域,其核心是利用信息和计算来模仿人们的学习方式,稳步提高其准确性。机器学习是快速发展的信息科学领域的重要组成部分。计算是使用可衡量的过程进行特征描述或预测,揭示信息挖掘操作中的重要经验。在本章中,我们将解释和比较 ML 的不同算法,这有助于在早期发现不同的疾病。
更新日期:2022-10-17
中文翻译:
5.0社会智能医疗系统的机器学习算法
大流行向我们表明,以数字方式记录我们的健康状况非常重要。同时,它也向我们展示了可穿戴观察设备、视频会议,甚至由人工智能 (AI) 驱动的谈话机器人等仪器的巨大潜力,可以提供远程良好的护理。从全球不同医疗设备收集的病例实时数据在抗击病毒方面发挥了重要作用,也有助于跟踪其进展。近年来,生物医学成像技术、集成传感器和机器学习 (ML) 的发展带来了各种健康益处。医疗保健和生物医学科学已成为信息科学领域,对精细的信息挖掘技术提出了坚实的要求,以从可访问的数据中删除信息。生物医学信息存在维度高、类别不规则、检测量低等信息调查难点。人工智能是人工智能和计算机科学的一个子领域,其核心是利用信息和计算来模仿人们的学习方式,稳步提高其准确性。机器学习是快速发展的信息科学领域的重要组成部分。计算是使用可衡量的过程进行特征描述或预测,揭示信息挖掘操作中的重要经验。在本章中,我们将解释和比较 ML 的不同算法,这有助于在早期发现不同的疾病。