Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Regulating f orbital of Tb electronic reservoir to activate stepwise and dual-directional sulfur conversion reaction
InfoMat ( IF 22.7 ) Pub Date : 2022-10-13 , DOI: 10.1002/inf2.12381 Shuang Yu 1 , Shuo Yang 1, 2 , Dong Cai 1 , Huagui Nie 1 , Xuemei Zhou 1 , Tingting Li 1 , Ce Liang 1 , Haohao Wang 2 , Yangyang Dong 1 , Rui Xu 1 , Guoyong Fang 1 , Jinjie Qian 1 , Yongjie Ge 1 , Yue Hu 1 , Zhi Yang 1
InfoMat ( IF 22.7 ) Pub Date : 2022-10-13 , DOI: 10.1002/inf2.12381 Shuang Yu 1 , Shuo Yang 1, 2 , Dong Cai 1 , Huagui Nie 1 , Xuemei Zhou 1 , Tingting Li 1 , Ce Liang 1 , Haohao Wang 2 , Yangyang Dong 1 , Rui Xu 1 , Guoyong Fang 1 , Jinjie Qian 1 , Yongjie Ge 1 , Yue Hu 1 , Zhi Yang 1
Affiliation
The sluggish kinetics in multistep sulfur redox reaction with different energy requirements for each step, is considered as the crucial handicap of lithium–sulfur (Li–S) batteries. Designing an electron reservoir, which can dynamically release electron to/accept electron from sulfur species during discharge/charge, is the ideal strategy for realizing stepwise and dual-directional polysulfide electrocatalysis. Herein, a single Tb3+/4+ oxide with moderate unfilled f orbital is synthetized as an electron reservoir to optimize polysulfide adsorption via Tb–S and N···Li bonds, reduce activation energy barrier, expedite electron/Li+ transport, and selectively catalyze both long-chain and short-chain polysulfide conversions during charge and discharge. As a result, Tb electron reservoir enables stable operation of low-capacity decay (0.087% over 500 cycles at 1 C), high sulfur loading (5.2 mg cm−2) and electrolyte-starved (7.5 μL mg−1) Li–S batteries. This work could unlock the potential of f orbital engineering for high-energy battery systems.
中文翻译:
调节Tb电子库的f轨道激活逐步双向硫转化反应
多步硫氧化还原反应的缓慢动力学,每步的能量需求不同,被认为是锂硫(Li-S)电池的关键障碍。设计一个电子库,它可以在放电/充电过程中动态地向硫物种释放电子/从硫物种接受电子,是实现逐步和双向多硫化物电催化的理想策略。在此,合成了具有适度未填充f轨道的单个 Tb 3+/4+氧化物作为电子库,以通过 Tb-S 和 N···Li 键优化多硫化物吸附,降低活化能垒,加速电子/Li + 运输,并在充电和放电过程中选择性地催化长链和短链多硫化物的转化。因此,Tb 电子库可实现低容量衰减(1 C 下 500 次循环后 0.087%)、高硫负载量(5.2 mg cm -2)和电解质不足(7.5 μL mg -1)Li-S 的稳定运行电池。这项工作可以释放高能电池系统f轨道工程的潜力。
更新日期:2022-10-13
中文翻译:
调节Tb电子库的f轨道激活逐步双向硫转化反应
多步硫氧化还原反应的缓慢动力学,每步的能量需求不同,被认为是锂硫(Li-S)电池的关键障碍。设计一个电子库,它可以在放电/充电过程中动态地向硫物种释放电子/从硫物种接受电子,是实现逐步和双向多硫化物电催化的理想策略。在此,合成了具有适度未填充f轨道的单个 Tb 3+/4+氧化物作为电子库,以通过 Tb-S 和 N···Li 键优化多硫化物吸附,降低活化能垒,加速电子/Li + 运输,并在充电和放电过程中选择性地催化长链和短链多硫化物的转化。因此,Tb 电子库可实现低容量衰减(1 C 下 500 次循环后 0.087%)、高硫负载量(5.2 mg cm -2)和电解质不足(7.5 μL mg -1)Li-S 的稳定运行电池。这项工作可以释放高能电池系统f轨道工程的潜力。