当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluorophenyl methyl sulfone as an interface modifier for Ni-rich cathode materials of lithium-ion batteries
Journal of Power Sources ( IF 8.1 ) Pub Date : 2022-10-10 , DOI: 10.1016/j.jpowsour.2022.232202
Subin Lee , Taeeun Yim

Nickel-rich lithium layered oxides are considered as the most addressing advanced cathode material for lithium-ion batteries, however, its low cycling performance at high temperature is considered the main bottleneck in expanding application areas. To improve poor surface stability of advanced cathode materials, fluorophenyl methyl sulfone is suggested as a surface modifier, which can make stable cathode-electrolyte interphases on the cathode via simple electrochemical oxidation. Electrochemical voltage spectroscopy indicates that the cell cycled with fluorophenyl methyl sulfone exhibits a higher amount of oxidation peaks corresponded to the formation of artificial interphases. In the cycling performance, the cell cycled with fluorophenyl methyl sulfone reveals improved cycling retention (81.7%) compared to that cycled with standard electrolyte (62.5%) at high temperature. Additional systematic analyses suggest that parasitic reaction associated with electrolyte decomposition is well suppressed in the cell controlled with fluorophenyl methyl sulfone because sulfone moiety of the additive participates to effective artificial interphases on the cathode.



中文翻译:

氟苯甲基砜作为锂离子电池富镍正极材料的界面改性剂

富镍锂层状氧化物被认为是最适合锂离子电池的先进正极材料,但其在高温下的低循环性能被认为是扩大应用领域的主要瓶颈。为了改善先进正极材料较差的表面稳定性,建议使用氟苯甲基砜作为表面改性剂,通过简单的电化学氧化在正极上形成稳定的正极-电解质界面。电化学电压光谱表明,用氟苯基甲基砜循环的细胞表现出更高量的氧化峰,对应于人工界面的形成。在循环性能方面,用氟苯甲基砜循环的电池显示出改善的循环保持力 (81. 7%) 与在高温下使用标准电解质 (62.5%) 循环的结果相比。额外的系统分析表明,在氟苯基甲基砜控制的电池中,与电解质分解相关的寄生反应得到了很好的抑制,因为添加剂的砜部分参与了阴极上的有效人工界面。

更新日期:2022-10-15
down
wechat
bug