当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Na+-Activation Engineering in the Na3V2(PO4)3 Cathode with Boosting Kinetics for Fast-Charging Na-Ion Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-10-11 , DOI: 10.1021/acsami.2c12685
Xing Shen 1, 2 , Yuefeng Su 1, 2 , Ni Yang 2 , Xiaoping Jiang 1, 2 , Xingxing Liu 2 , Junlin Mo 2 , Yan Ran 2 , Feng Wu 1, 2
Affiliation  

Na superionic conductor-structured phosphates have attracted wide interest due to their high working voltage and fast Na+ migration facilitated by the robust 3D open framework. However, they usually suffer from low-rate capability and inferior cycling stability due to the low intrinsic electronic conductivity and limited activated Na+ ions. Herein, a doping protocol with Na+ in the V3+ site is developed to activate extra electrochemical Na+ ions and expand the migration path of Na+, leading to the improvement of the electronic conductivity and diffusion kinetics. It is also disclosed that the generated stronger Na–O bonds with high ionicity significantly conduce to the enhanced structural stability in the Na+-substituted Na3.05V1.975Na0.025(PO4)3/C cathode. The obtained composite can deliver an excellent rate capacity of 83.8 mA h g–1 at 20 C and a moderate cycling persistence of 91.3% over 1500 cycles at 10 C with great fast-charging properties. The reversible structure evolution is confirmed by the ex situ XRD, XPS, and ICP characterization. This work sheds light on awakening electroactive Na+ ions and designing phosphates with superior electrochemical stability for practical Na-ion batteries.

中文翻译:

Na3V2(PO4)3 阴极中的 Na+-活化工程,具有促进动力学的快速充电钠离子电池

Na 超离子导体结构的磷酸盐因其高工作电压和强大的 3D 开放框架促进的快速 Na +迁移而引起了广泛的兴趣。然而,由于固有的电子电导率低和活化的Na +离子有限,它们通常具有低倍率性能和较差的循环稳定性。在此,开发了一种在 V 3+位点使用 Na +的掺杂方案,以激活额外的电化学 Na +离子并扩展 Na + 的迁移路径,导致电子导电性和扩散动力学的改善。还公开了在Na +取代的Na 3.05 V 1.975 Na 0.025 (PO 4 ) 3 /C正极中产生的具有高离子性的更强的Na-O键显着有助于提高结构稳定性。所获得的复合材料在 20 C 下可提供 83.8 mA hg –1的优异倍率容量,在 10 C 下 1500 次循环后具有 91.3% 的中等循环持久性,并具有出色的快速充电性能。通过非原位XRD、XPS 和 ICP 表征证实了可逆的结构演变。这项工作揭示了唤醒电活性 Na +离子并为实用的钠离子电池设计具有优异电化学稳定性的磷酸盐。
更新日期:2022-10-11
down
wechat
bug