当前位置:
X-MOL 学术
›
Laser Photonics Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Computer-Generated Holographic Nanoprinting
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2022-10-10 , DOI: 10.1002/lpor.202200448 Kuixian Chen 1 , Zhiqiang Guan 2, 3 , Zile Li 1, 4 , Yan Yang 5 , Zhixue He 4 , Shaohua Yu 4 , Guoxing Zheng 1, 3, 4
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2022-10-10 , DOI: 10.1002/lpor.202200448 Kuixian Chen 1 , Zhiqiang Guan 2, 3 , Zile Li 1, 4 , Yan Yang 5 , Zhixue He 4 , Shaohua Yu 4 , Guoxing Zheng 1, 3, 4
Affiliation
Metasurface-assisted nanoprinting is usually enabled by spectrum-modulation and/or polarization-modulation at the subwavelength scale. The spectrum-modulated nanoprint works under unpolarized white-light and requires the minimalist observation conditions, but it can hardly modulate light brightness; the polarization-modulated nanoprint can continuously control light brightness, but it requires complex and precise polarization control both at the input and output ends to decode a nanoprinting image. In this study, computer-generated holographic nanoprinting is designed and experimentally demonstrated, enabled by Pancharatnam–Berry phase modulation of light, which has both the advantages of the two types of nanoprintings while avoiding their disadvantages. Specifically, a general platform is built to implement single-channel/multichannel/color nanoprinting in a holography way, which presents its unique characteristics like incoherent light illumination, arbitrary brightness modulation, polarization insensitivity, and zero-dispersion. A periodic phase is further attached to the target object wave during the holographic interference pattern generation, and the reconstructed nanoprinting image only appears in the zero-order diffraction direction, thus making the information delivery safer. This study can empower advanced research on metasurface-based nanoprinting, which can find its markets in ultracompact image-display, data storage, information multiplexing, and many other related fields.
中文翻译:
计算机生成的全息纳米打印
超表面辅助纳米印刷通常通过亚波长尺度的光谱调制和/或偏振调制来实现。光谱调制纳米打印在非偏振白光下工作,需要极简的观察条件,但几乎不能调制光亮度;偏振调制纳米打印可以连续控制光亮度,但它需要在输入和输出端进行复杂而精确的偏振控制才能解码纳米打印图像。在这项研究中,计算机生成的全息纳米印刷被设计并通过实验证明,通过光的 Pancharatnam-Berry 相位调制实现,它既具有两种类型的纳米印刷的优点,又避免了它们的缺点。具体来说,构建了一个通用平台,以全息方式实现单通道/多通道/彩色纳米打印,呈现出非相干光照射、任意亮度调制、偏振不敏感和零色散等独特特性。在全息干涉图案生成过程中,目标物波进一步附加周期相位,重建的纳米打印图像仅出现在零级衍射方向,从而使信息传递更加安全。这项研究可以促进基于超表面的纳米打印的高级研究,它可以在超紧凑图像显示、数据存储、信息复用和许多其他相关领域找到它的市场。任意亮度调制、偏振不敏感和零色散。在全息干涉图案生成过程中,目标物波进一步附加周期相位,重建的纳米打印图像仅出现在零级衍射方向,从而使信息传递更加安全。这项研究可以促进基于超表面的纳米打印的高级研究,它可以在超紧凑图像显示、数据存储、信息复用和许多其他相关领域找到它的市场。任意亮度调制、偏振不敏感和零色散。在全息干涉图案生成过程中,目标物波进一步附加周期相位,重建的纳米打印图像仅出现在零级衍射方向,从而使信息传递更加安全。这项研究可以促进基于超表面的纳米打印的高级研究,它可以在超紧凑图像显示、数据存储、信息复用和许多其他相关领域找到它的市场。从而使信息传递更加安全。这项研究可以促进基于超表面的纳米打印的高级研究,它可以在超紧凑图像显示、数据存储、信息复用和许多其他相关领域找到它的市场。从而使信息传递更加安全。这项研究可以促进基于超表面的纳米打印的高级研究,它可以在超紧凑图像显示、数据存储、信息复用和许多其他相关领域找到它的市场。
更新日期:2022-10-10
中文翻译:
计算机生成的全息纳米打印
超表面辅助纳米印刷通常通过亚波长尺度的光谱调制和/或偏振调制来实现。光谱调制纳米打印在非偏振白光下工作,需要极简的观察条件,但几乎不能调制光亮度;偏振调制纳米打印可以连续控制光亮度,但它需要在输入和输出端进行复杂而精确的偏振控制才能解码纳米打印图像。在这项研究中,计算机生成的全息纳米印刷被设计并通过实验证明,通过光的 Pancharatnam-Berry 相位调制实现,它既具有两种类型的纳米印刷的优点,又避免了它们的缺点。具体来说,构建了一个通用平台,以全息方式实现单通道/多通道/彩色纳米打印,呈现出非相干光照射、任意亮度调制、偏振不敏感和零色散等独特特性。在全息干涉图案生成过程中,目标物波进一步附加周期相位,重建的纳米打印图像仅出现在零级衍射方向,从而使信息传递更加安全。这项研究可以促进基于超表面的纳米打印的高级研究,它可以在超紧凑图像显示、数据存储、信息复用和许多其他相关领域找到它的市场。任意亮度调制、偏振不敏感和零色散。在全息干涉图案生成过程中,目标物波进一步附加周期相位,重建的纳米打印图像仅出现在零级衍射方向,从而使信息传递更加安全。这项研究可以促进基于超表面的纳米打印的高级研究,它可以在超紧凑图像显示、数据存储、信息复用和许多其他相关领域找到它的市场。任意亮度调制、偏振不敏感和零色散。在全息干涉图案生成过程中,目标物波进一步附加周期相位,重建的纳米打印图像仅出现在零级衍射方向,从而使信息传递更加安全。这项研究可以促进基于超表面的纳米打印的高级研究,它可以在超紧凑图像显示、数据存储、信息复用和许多其他相关领域找到它的市场。从而使信息传递更加安全。这项研究可以促进基于超表面的纳米打印的高级研究,它可以在超紧凑图像显示、数据存储、信息复用和许多其他相关领域找到它的市场。从而使信息传递更加安全。这项研究可以促进基于超表面的纳米打印的高级研究,它可以在超紧凑图像显示、数据存储、信息复用和许多其他相关领域找到它的市场。