当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An Electrochemical-Electret Coupled Organic Synapse with Single-Polarity Driven Reversible Facilitation-to-Depression Switching
Advanced Materials ( IF 27.4 ) Pub Date : 2022-10-06 , DOI: 10.1002/adma.202205945 Hanlin Wang 1 , Yusheng Chen 1 , Zhenjie Ni 2 , Paolo Samorì 1
Advanced Materials ( IF 27.4 ) Pub Date : 2022-10-06 , DOI: 10.1002/adma.202205945 Hanlin Wang 1 , Yusheng Chen 1 , Zhenjie Ni 2 , Paolo Samorì 1
Affiliation
Neuromorphic engineering and artificial intelligence demands hardware elements that emulates synapse algorithms. During the last decade electrolyte-gated organic conjugated materials have been explored as a platform for artificial synapses for neuromorphic computing. Unlike biological synapses, in current devices the synaptic facilitation and depression are triggered by voltages with opposite polarity. To enhance the reliability and simplify the operation of the synapse without lowering its sophisticated functionality, here, an electrochemical-electret coupled organic synapse (EECS) possessing a reversible facilitation-to-depression switch, is devised. Electret charging counterbalances channel conductance changes due to electrochemical doping, inducing depression without inverting the gate polarity. Overall, EECS functions as a threshold-controlled synaptic switch ruled by its amplitude-dependent, dual-modal operation, which can well emulate information storage and erase as in real synapses. By varying the energy level offset between the channel material and the electret, the EECS's transition threshold can be adjusted for specific applications, e.g., imparting additional light responsiveness to the device operation. The novel device architecture represents a major step forward in the development of artificial organic synapses with increased functional complexity and it opens new perspectives toward the fabrication of abiotic neural networks with higher reliability, efficiency, and endurance.
中文翻译:
一种电化学-驻极体耦合有机突触,具有单极性驱动的可逆易化-抑制转换
神经形态工程和人工智能需要模拟突触算法的硬件元素。在过去十年中,电解质门控有机共轭材料已被探索为神经形态计算的人工突触平台。与生物突触不同,在当前设备中,突触促进和抑制是由极性相反的电压触发的。为了在不降低其复杂功能的情况下提高突触的可靠性并简化其操作,本文设计了一种具有可逆促进-抑制开关的电化学-驻极体耦合有机突触 (EECS)。驻极体充电可平衡由于电化学掺杂引起的通道电导变化,从而在不反转栅极极性的情况下引起抑制。全面的,EECS 的功能是作为一个阈值控制的突触开关,由其依赖于振幅的双模式操作控制,可以很好地模拟真实突触中的信息存储和擦除。通过改变通道材料和驻极体之间的能级偏移,可以针对特定应用调整 EECS 的跃迁阈值,例如,为设备操作赋予额外的光响应性。新颖的设备架构代表了在功能复杂性增加的人工有机突触开发方面向前迈出的重要一步,它为制造具有更高可靠性、效率和耐久性的非生物神经网络开辟了新的视角。通过改变通道材料和驻极体之间的能级偏移,可以针对特定应用调整 EECS 的跃迁阈值,例如,为设备操作赋予额外的光响应性。新颖的设备架构代表了在功能复杂性增加的人工有机突触开发方面向前迈出的重要一步,它为制造具有更高可靠性、效率和耐久性的非生物神经网络开辟了新的视角。通过改变通道材料和驻极体之间的能级偏移,可以针对特定应用调整 EECS 的跃迁阈值,例如,为设备操作赋予额外的光响应性。新颖的设备架构代表了在功能复杂性增加的人工有机突触开发方面向前迈出的重要一步,它为制造具有更高可靠性、效率和耐久性的非生物神经网络开辟了新的视角。
更新日期:2022-10-06
中文翻译:
一种电化学-驻极体耦合有机突触,具有单极性驱动的可逆易化-抑制转换
神经形态工程和人工智能需要模拟突触算法的硬件元素。在过去十年中,电解质门控有机共轭材料已被探索为神经形态计算的人工突触平台。与生物突触不同,在当前设备中,突触促进和抑制是由极性相反的电压触发的。为了在不降低其复杂功能的情况下提高突触的可靠性并简化其操作,本文设计了一种具有可逆促进-抑制开关的电化学-驻极体耦合有机突触 (EECS)。驻极体充电可平衡由于电化学掺杂引起的通道电导变化,从而在不反转栅极极性的情况下引起抑制。全面的,EECS 的功能是作为一个阈值控制的突触开关,由其依赖于振幅的双模式操作控制,可以很好地模拟真实突触中的信息存储和擦除。通过改变通道材料和驻极体之间的能级偏移,可以针对特定应用调整 EECS 的跃迁阈值,例如,为设备操作赋予额外的光响应性。新颖的设备架构代表了在功能复杂性增加的人工有机突触开发方面向前迈出的重要一步,它为制造具有更高可靠性、效率和耐久性的非生物神经网络开辟了新的视角。通过改变通道材料和驻极体之间的能级偏移,可以针对特定应用调整 EECS 的跃迁阈值,例如,为设备操作赋予额外的光响应性。新颖的设备架构代表了在功能复杂性增加的人工有机突触开发方面向前迈出的重要一步,它为制造具有更高可靠性、效率和耐久性的非生物神经网络开辟了新的视角。通过改变通道材料和驻极体之间的能级偏移,可以针对特定应用调整 EECS 的跃迁阈值,例如,为设备操作赋予额外的光响应性。新颖的设备架构代表了在功能复杂性增加的人工有机突触开发方面向前迈出的重要一步,它为制造具有更高可靠性、效率和耐久性的非生物神经网络开辟了新的视角。