尽管恶性神经胶质瘤经常表现出哺乳动物雷帕霉素靶蛋白 (mTOR) 的异常激活,但 mTOR 抑制剂在临床试验中表现不佳。除了调节细胞生长和翻译,mTOR 还控制自噬的启动。通过回收细胞成分,自噬可以调动能量资源,因此被归因于促癌作用。在这里,我们询问自噬的激活是否代表了胶质瘤细胞中药理学 mTOR 抑制的逃逸机制,并探索了将 mTOR 和自噬抑制剂联合治疗作为一种治疗策略。模拟胶质瘤微环境的条件,胶质瘤细胞暴露于营养缺乏和缺氧状态。我们分析了自噬活性、细胞生长、用 mTOR 抑制剂 torin2 或雷帕霉素和自噬抑制剂巴弗洛霉素 A1 或 MRT68921(共)处理后的活力和耗氧量。全球蛋白质组的变化通过质谱法进行量化。在缺氧和饥饿的情况下,自噬在胶质瘤细胞中被强烈诱导,并通过 mTOR 抑制进一步增加。虽然 torin2 增强了胶质瘤细胞的存活率,但与 torin2 和巴弗洛霉素 A1 共同治疗未能促进细胞死亡。重要的是,单独使用巴弗洛霉素 A1 治疗也可以保护神经胶质瘤细胞免于细胞死亡。从机制上讲,这两种化合物都显着降低了细胞生长和耗氧量。定量蛋白质组学分析表明,巴弗洛霉素 A1 诱导了细胞蛋白质组的广泛变化。进一步来说,被巴弗洛霉素 A1 下调的蛋白质与线粒体呼吸链和 ATP 合成有关。总之,我们的结果表明,在我们的神经胶质瘤微环境体外模型中,自噬的激活不能解释 mTOR 抑制的细胞保护作用。我们的蛋白质组学研究结果表明,自噬的药理学抑制诱导细胞蛋白质组发生广泛变化,从而支持神经胶质瘤细胞在营养耗尽和缺氧条件下存活。这些发现为自噬在胶质瘤中的复杂作用提供了新的视角。我们的蛋白质组学研究结果表明,自噬的药理学抑制诱导细胞蛋白质组发生广泛变化,从而支持神经胶质瘤细胞在营养耗尽和缺氧条件下存活。这些发现为自噬在胶质瘤中的复杂作用提供了新的视角。我们的蛋白质组学研究结果表明,自噬的药理学抑制诱导细胞蛋白质组发生广泛变化,从而支持神经胶质瘤细胞在营养耗尽和缺氧条件下存活。这些发现为自噬在胶质瘤中的复杂作用提供了新的视角。
"点击查看英文标题和摘要"
Inhibition of mTOR signaling protects human glioma cells from hypoxia-induced cell death in an autophagy-independent manner
Although malignant gliomas frequently show aberrant activation of the mammalian target of rapamycin (mTOR), mTOR inhibitors have performed poorly in clinical trials. Besides regulating cell growth and translation, mTOR controls the initiation of autophagy. By recycling cellular components, autophagy can mobilize energy resources, and has thus been attributed cancer-promoting effects. Here, we asked whether the activation of autophagy represents an escape mechanism to pharmacological mTOR inhibition in glioma cells, and explored co-treatment with mTOR and autophagy inhibitors as a therapeutic strategy. Mimicking conditions of the glioma microenvironment, glioma cells were exposed to nutrient starvation and hypoxia. We analyzed autophagic activity, cell growth, viability and oxygen consumption following (co-)treatment with the mTOR inhibitors torin2 or rapamycin, and autophagy inhibitors bafilomycin A1 or MRT68921. Changes in global proteome were quantified by mass spectrometry. In the context of hypoxia and starvation, autophagy was strongly induced in glioma cells and further increased by mTOR inhibition. While torin2 enhanced glioma cell survival, co-treatment with torin2 and bafilomycin A1 failed to promote cell death. Importantly, treatment with bafilomycin A1 alone also protected glioma cells from cell death. Mechanistically, both compounds significantly reduced cell growth and oxygen consumption. Quantitative proteomics analysis showed that bafilomycin A1 induced broad changes in the cellular proteome. More specifically, proteins downregulated by bafilomycin A1 were associated with the mitochondrial respiratory chain and ATP synthesis. Taken together, our results show that activation of autophagy does not account for the cytoprotective effects of mTOR inhibition in our in vitro model of the glioma microenvironment. Our proteomic findings suggest that the pharmacological inhibition of autophagy induces extensive changes in the cellular proteome that can support glioma cell survival under nutrient-deplete and hypoxic conditions. These findings provide a novel perspective on the complex role of autophagy in gliomas.