Planta ( IF 3.6 ) Pub Date : 2022-10-06 , DOI: 10.1007/s00425-022-03998-w Dwayne Hegedus 1, 2 , Cathy Coutu 1 , Branimir Gjetvaj 1 , Abdelali Hannoufa 3 , Myrtle Harrington 1 , Sara Martin 3 , Isobel A P Parkin 1 , Suneru Perera 1, 2 , Janitha Wanasundara 1, 2
Main conclusion
Genetic variation in seed protein composition, seed protein gene expression and predictions of seed protein physiochemical properties were documented in C. sativa and other Camelina species.
Abstract
Seed protein diversity was examined in six Camelina species (C. hispida, C. laxa, C. microcarpa, C. neglecta, C. rumelica and C. sativa). Differences were observed in seed protein electrophoretic profiles, total seed protein content and amino acid composition between the species. Genes encoding major seed proteins (cruciferins, napins, oleosins and vicilins) were catalogued for C. sativa and RNA-Seq analysis established the expression patterns of these and other genes in developing seed from anthesis through to maturation. Examination of 187 C. sativa accessions revealed limited variation in seed protein electrophoretic profiles, though sufficient to group the majority into classes based on high MW protein profiles corresponding to the cruciferin region. C. sativa possessed four distinct types of cruciferins, named CsCRA, CsCRB, CsCRC and CsCRD, which corresponded to orthologues in Arabidopsis thaliana with members of each type encoded by homeologous genes on the three C. sativa sub-genomes. Total protein content and amino acid composition varied only slightly; however, RNA-Seq analysis revealed that CsCRA and CsCRB genes contributed > 95% of the cruciferin transcripts in most lines, whereas CsCRC genes were the most highly expressed cruciferin genes in others, including the type cultivar DH55. This was confirmed by proteomics analyses. Cruciferin is the most abundant seed protein and contributes the most to functionality. Modelling of the C. sativa cruciferins indicated that each type possesses different physiochemical attributes that were predicted to impart unique functional properties. As such, opportunities exist to create C. sativa cultivars with seed protein profiles tailored to specific technical applications.
中文翻译:
亚麻荠种间和种内主要种子蛋白的遗传变异和结构多样性
主要结论
在C. sativa和其他Camelina物种中记录了种子蛋白质组成、种子蛋白质基因表达和种子蛋白质理化特性预测的遗传变异。
抽象的
在六种亚麻荠(C. hispida、C. laxa、C. microcarpa、C . ignorea 、 C . rumelica和C. sativa)中检查了种子蛋白质的多样性。种子蛋白电泳图谱、种子总蛋白含量和氨基酸组成在物种间存在差异。编码主要种子蛋白(十字花科植物素、napins、油质蛋白和vicilins)的基因被编目用于C. sativa,RNA-Seq分析确定了这些基因和其他基因在种子从开花到成熟的过程中的表达模式。187 C. sativa的检查种质揭示了种子蛋白电泳图谱的有限变化,尽管足以根据与十字花科植物素区域相对应的高 MW 蛋白图谱将大多数分为几类。C. sativa拥有四种不同类型的十字花科植物素,分别命名为 CsCRA、CsCRB、CsCRC 和 CsCRD,它们对应于拟南芥中的直系同源物,每种类型的成员由三个C. sativa亚基因组上的同源基因编码。总蛋白质含量和氨基酸组成变化不大;然而,RNA-Seq 分析显示CsCRA和CsCRB基因在大多数系中贡献了 > 95% 的十字花科植物素转录物,而CsCRC基因是其他品种中表达最高的十字花科基因,包括品种DH55。蛋白质组学分析证实了这一点。十字花科植物蛋白是最丰富的种子蛋白,对功能的贡献最大。C. sativa十字花科的建模表明,每种类型都具有不同的理化属性,预计这些属性会赋予独特的功能特性。因此,存在创造具有针对特定技术应用量身定制的种子蛋白质谱的C. sativa栽培品种的机会。