当前位置: X-MOL 学术Commun. Number Theory Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphical functions in even dimensions
Communications in Number Theory and Physics ( IF 1.2 ) Pub Date : 2022-10-04 , DOI: 10.4310/cntp.2022.v16.n3.a3
Michael Borinsky 1 , Oliver Schnetz 2
Affiliation  

Graphical functions are special position space Feynman integrals, which can be used to calculate Feynman periods and one- or two-scale processes at high loop orders. With graphical functions, renormalization constants have been calculated to loop orders seven and eight in four-dimensional $\phi^4$ theory and to order five in six-dimensional $\phi^3$ theory. In this article we present the theory of graphical functions in even dimensions $\geq 4$ with detailed reviews of known properties and full proofs whenever possible.

中文翻译:

偶数维图形函数

图形函数是特殊的位置空间费曼积分,可用于计算费曼周期和高环阶的一或二尺度过程。使用图形函数,已经计算出重整化常数以循环四维 $\phi^4$ 理论中的七阶和八阶,以及六维 $\phi^3$ 理论中的五阶。在本文中,我们将介绍偶数维 $\geq 4$ 中的图函数理论,并尽可能详细地回顾已知属性和完整证明。
更新日期:2022-10-05
down
wechat
bug