当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Topology- and wavelength-governed CO2 reduction photocatalysis in molecular catalyst-metal–organic framework assemblies
Chemical Science ( IF 7.6 ) Pub Date : 2022-10-03 , DOI: 10.1039/d2sc03097g
Philip M Stanley 1 , Karina Hemmer 1 , Markus Hegelmann 1 , Annika Schulz 1 , Mihyun Park 1 , Martin Elsner 2 , Mirza Cokoja 1 , Julien Warnan 1
Affiliation  

Optimising catalyst materials for visible light-driven fuel production requires understanding complex and intertwined processes including light absorption and catalyst stability, as well as mass, charge, and energy transport. These phenomena can be uniquely combined (and ideally controlled) in porous host–guest systems. Towards this goal we designed model systems consisting of molecular complexes as catalysts and porphyrin metal–organic frameworks (MOFs) as light-harvesting and hosting porous matrices. Two MOF-rhenium molecule hybrids with identical building units but differing topologies (PCN-222 and PCN-224) were prepared including photosensitiser-catalyst dyad-like systems integrated via self-assembled molecular recognition. This allowed us to investigate the impact of MOF topology on solar fuel production, with PCN-222 assemblies yielding a 9-fold turnover number enhancement for solar CO2-to-CO reduction over PCN-224 hybrids as well as a 10-fold increase compared to the homogeneous catalyst-porphyrin dyad. Catalytic, spectroscopic and computational investigations identified larger pores and efficient exciton hopping as performance boosters, and further unveiled a MOF-specific, wavelength-dependent catalytic behaviour. Accordingly, CO2 reduction product selectivity is governed by selective activation of two independent, circumscribed or delocalised, energy/electron transfer channels from the porphyrin excited state to either formate-producing MOF nodes or the CO-producing molecular catalysts.

中文翻译:


分子催化剂-金属-有机框架组件中拓扑和波长控制的二氧化碳还原光催化



优化可见光驱动燃料生产的催化剂材料需要了解复杂且相互交织的过程,包括光吸收和催化剂稳定性,以及质量、电荷和能量传输。这些现象可以在多孔主客体系统中独特地组合(并理想地控制)。为了实现这一目标,我们设计了由作为催化剂的分子复合物和作为光捕获和托管多孔基质的卟啉金属有机框架(MOF)组成的模型系统。制备了两种具有相同结构单元但不同拓扑的 MOF-铼分子杂化物(PCN-222 和 PCN-224),包括通过自组装分子识别集成的光敏剂-催化剂二元体系统。这使我们能够研究 MOF 拓扑结构对太阳能燃料生产的影响,与 PCN-224 混合组件相比,PCN-222 组件的太阳能 CO 2转化为 CO 的转化率提高了 9 倍,并且提高了 10 倍与均相催化剂-卟啉二元体相比。催化、光谱和计算研究发现更大的孔和有效的激子跳跃可以作为性能增强剂,并进一步揭示了 MOF 特定的、波长依赖的催化行为。因此,CO 2还原产物选择性受两个独立的、限制的或离域的、从卟啉激发态到产生甲酸盐的MOF节点或产生CO的分子催化剂的能量/电子转移通道的选择性激活的控制。
更新日期:2022-10-03
down
wechat
bug