当前位置:
X-MOL 学术
›
Inorg. Chem. Front.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controlling the speciation and selectivity of Si3N4 supported palladium nanostructures for catalysed acetylene selective hydrogenation
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2022-09-30 , DOI: 10.1039/d2qi01664h Rongrong Li 1 , Yuxue Yue 2 , Yongkun Li 2 , Xianlang Chen 1 , Renqin Chang 3 , Jiaxin Zhang 1 , Bo Zhao 1 , Xia Ying 1 , Zijian Wang 1 , Jia Zhao 2 , Xiaonian Li 3
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2022-09-30 , DOI: 10.1039/d2qi01664h Rongrong Li 1 , Yuxue Yue 2 , Yongkun Li 2 , Xianlang Chen 1 , Renqin Chang 3 , Jiaxin Zhang 1 , Bo Zhao 1 , Xia Ying 1 , Zijian Wang 1 , Jia Zhao 2 , Xiaonian Li 3
Affiliation
Metal–support interactions predominately determine the electronic structure and catalytic behavior of metal nanoparticles. However, direct tuning of the metal–support interaction under mild conditions and directional regulation of the surface charge remain challenging. Herein, we describe the transformation of Pd species in Pd/Si3N4 catalysts under facile thermal activation conditions to control the selectivity of acetylene hydrogenation. Specifically, after thermal activation, a series of flattened Pd particles with different convexities were formed, driving the formation of low-coordination Pd–Nx and Pdδ− species, thus providing a more reactive Pdδ− surface and a more stable Pdδ+–Nx interface (Pdδ−@Pdδ+–Nx). Such a structure hinders Pd hydride formation and weakens ethane adsorption, and thus improves the catalytic performance and stability for acetylene semi-hydrogenation. The surface of the low-convexity Pd particles with a denser and richer Pdδ− capping layer exhibits a lower differential adsorption energy, |Eads(C2H2) − Eads(C2H4)|, resulting in a higher ethylene selectivity. Moreover, the combination of high-resolution transmission electron microscopy (HR-TEM), infrared Fourier transform spectroscopy of adsorbed CO (CO-FTIR), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS) demonstrated that different active sites play distinct roles in this catalytic reaction, where the charge of the surface Pdδ− species determines the catalytic activity and selectivity, and the content of Pd–Nx regulates the catalyst stability.
中文翻译:
控制 Si3N4 负载的钯纳米结构的形态和选择性用于催化乙炔选择性加氢
金属-载体相互作用主要决定了金属纳米粒子的电子结构和催化行为。然而,在温和条件下直接调节金属-载体相互作用和表面电荷的方向调节仍然具有挑战性。在此,我们描述了在简易热活化条件下 Pd/Si 3 N 4催化剂中 Pd 物质的转化,以控制乙炔加氢的选择性。具体而言,在热活化后,形成了一系列具有不同凸度的扁平 Pd 颗粒,驱动了低配位 Pd-N x和 Pd δ -物种的形成,从而提供了更具反应性的 Pd δ -表面和更稳定的 Pdδ + –N x界面(Pd δ - @Pd δ + –N x)。这种结构阻碍了Pd氢化物的形成,削弱了乙烷的吸附,从而提高了乙炔半加氢的催化性能和稳定性。具有更密集和更丰富的 Pd δ -覆盖层的低凸度 Pd 颗粒表面表现出较低的微分吸附能,| E广告(C 2 H 2 ) -E广告(C 2 H 4)|,导致更高的乙烯选择性。此外,高分辨率透射电子显微镜 (HR-TEM)、吸附 CO 的红外傅里叶变换光谱 (CO-FTIR)、X 射线吸收光谱 (XAS) 和 X 射线光电子能谱 (XPS) 的组合表明,不同的活性位点在该催化反应中发挥不同的作用,其中表面 Pd δ -物质的电荷决定了催化活性和选择性,而 Pd-N x的含量则调节了催化剂的稳定性。
更新日期:2022-09-30
中文翻译:
控制 Si3N4 负载的钯纳米结构的形态和选择性用于催化乙炔选择性加氢
金属-载体相互作用主要决定了金属纳米粒子的电子结构和催化行为。然而,在温和条件下直接调节金属-载体相互作用和表面电荷的方向调节仍然具有挑战性。在此,我们描述了在简易热活化条件下 Pd/Si 3 N 4催化剂中 Pd 物质的转化,以控制乙炔加氢的选择性。具体而言,在热活化后,形成了一系列具有不同凸度的扁平 Pd 颗粒,驱动了低配位 Pd-N x和 Pd δ -物种的形成,从而提供了更具反应性的 Pd δ -表面和更稳定的 Pdδ + –N x界面(Pd δ - @Pd δ + –N x)。这种结构阻碍了Pd氢化物的形成,削弱了乙烷的吸附,从而提高了乙炔半加氢的催化性能和稳定性。具有更密集和更丰富的 Pd δ -覆盖层的低凸度 Pd 颗粒表面表现出较低的微分吸附能,| E广告(C 2 H 2 ) -E广告(C 2 H 4)|,导致更高的乙烯选择性。此外,高分辨率透射电子显微镜 (HR-TEM)、吸附 CO 的红外傅里叶变换光谱 (CO-FTIR)、X 射线吸收光谱 (XAS) 和 X 射线光电子能谱 (XPS) 的组合表明,不同的活性位点在该催化反应中发挥不同的作用,其中表面 Pd δ -物质的电荷决定了催化活性和选择性,而 Pd-N x的含量则调节了催化剂的稳定性。