Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2022-09-27 , DOI: 10.1016/j.apcatb.2022.122022 Kohsuke Mori , Hiroto Hata , Hiromi Yamashita
The interfacial modification of Pd nanoparticles supported on g-C3N4 (CN) was performed using highly dispersed amorphous MOx phase, where M represents Ga, Al, or B. The resulting Pd@MOx/CN exhibited enhanced activity in the hydrogenation of CO2 to yield formic acid. In particular, Pd@GaOx/CN displayed a maximum turnover number of 4540 based on the quantity of surface-exposed Pd atoms; this turnover number is more than six times higher than that of the unmodified catalyst. DFT calculations show that the presence of GaOx clusters on the Pd(111) surface produces the unique Pd ensemble sites, where electron-deficient Pdδ+ and electron-rich Pdδ− are adjacent. On the basis of kinetic and theoretical investigations, we propose a reasonable dual activation mechanism: the electron-deficient Pdδ+ species facilitates the adsorption of HCO3− ions, whereas the electron-rich Pdδ− species accelerates not only H2 dissociation but also the attack of dissociated H atoms on C atoms in HCO3− ions.
中文翻译:
GaOx 修饰诱导的 Pd 集合位点在促进 CO2 加氢制甲酸中的相互作用
负载在g -C 3 N 4 (CN)上的 Pd 纳米颗粒的界面改性是使用高度分散的无定形 MO x相进行的,其中 M 代表 Ga、Al 或 B。所得 Pd@MO x /CN 在CO 2加氢生成甲酸。特别是,基于表面暴露的 Pd 原子的数量,Pd@GaO x /CN 的最大转换数为 4540;这个周转数是未改性催化剂的六倍多。DFT 计算表明,在 Pd(111) 表面上存在 GaO x簇会产生独特的 Pd 集合位点,其中缺电子 Pd δ+和富含电子的 Pd δ-相邻。在动力学和理论研究的基础上,我们提出了一种合理的双重活化机制:缺电子的 Pd δ+物质促进了 HCO 3 -离子的吸附,而富电子的 Pd δ-物质不仅加速了 H 2的解离,而且此外,HCO 3 -离子中的离解 H 原子对 C 原子的攻击。