当前位置:
X-MOL 学术
›
Adv. Electron. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Resistive Switching in Ag2Te Semiconductor Modulated by Ag+-Ion Diffusion and Phase Transition
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2022-09-20 , DOI: 10.1002/aelm.202200850 Anan Guo 1, 2 , Hui Bai 1, 2 , Qi Liang 1, 2 , Liping Feng 1 , Xianli Su 1 , Gustaaf Van Tendeloo 2, 3 , Jinsong Wu 1, 2
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2022-09-20 , DOI: 10.1002/aelm.202200850 Anan Guo 1, 2 , Hui Bai 1, 2 , Qi Liang 1, 2 , Liping Feng 1 , Xianli Su 1 , Gustaaf Van Tendeloo 2, 3 , Jinsong Wu 1, 2
Affiliation
Memristors are considered to be the fourth circuit element and have great potential in areas like logic operations, information storage, and neuromorphic computing. The functional material in a memristor, which has a nonlinear resistance, is the key component to be developed. Herein, resistive switching is demonstrated and the structural evolutions in Ag2Te are examined under an external electric field. It is shown that the electroresistance effect is originating from an electronically triggered phase transition together with directional Ag+-ion diffusion. Using in situ transmission electron microscopy, the phase transition from the monoclinic α-Ag2Te into the face-centered cubic b-Ag2Te, accompanied by a change in resistance, is directly observed. Diffusion of Ag+-ions modulates the localized density of Ag+-ion vacancies, leading to a change in electrical conductivity and influences the threshold voltage to trigger the phase transition. During the electric field-driven phase transition, the spontaneous and localized multiple polarizations from the low-symmetry α-Ag2Te (referring to an antiferroelectric structure) are vanishing in the cubic b-Ag2Te (referring to a paraelectric structure). The abrupt resistance change of thin Ag2Te caused by the phase transition and modulated by the applied electric field demonstrates its great potential as functional material in volatile memory and memristors with a low-energy consumption.
中文翻译:
由 Ag+-离子扩散和相变调制的 Ag2Te 半导体中的电阻开关
忆阻器被认为是第四电路元件,在逻辑运算、信息存储和神经形态计算等领域具有巨大潜力。忆阻器中的功能材料具有非线性电阻,是需要开发的关键部件。在此,演示了电阻开关,并在外部电场下检查了Ag 2 Te中的结构演变。结果表明,电阻效应源自电子触发的相变以及定向 Ag +离子扩散。使用原位透射电子显微镜,从单斜 α-Ag 2 Te 到面心立方b -Ag 2的相变直接观察到 Te 伴随着电阻的变化。Ag +离子的扩散调节 Ag +离子空位的局部密度,导致电导率发生变化并影响阈值电压以触发相变。在电场驱动的相变过程中,来自低对称性α-Ag 2 Te(指反铁电结构)的自发局域多重极化在立方b -Ag 2 Te(指顺电结构)中消失。薄Ag 2的电阻突变由相变引起并由施加的电场调制的 Te 证明了其作为低能耗易失性存储器和忆阻器中功能材料的巨大潜力。
更新日期:2022-09-20
中文翻译:
由 Ag+-离子扩散和相变调制的 Ag2Te 半导体中的电阻开关
忆阻器被认为是第四电路元件,在逻辑运算、信息存储和神经形态计算等领域具有巨大潜力。忆阻器中的功能材料具有非线性电阻,是需要开发的关键部件。在此,演示了电阻开关,并在外部电场下检查了Ag 2 Te中的结构演变。结果表明,电阻效应源自电子触发的相变以及定向 Ag +离子扩散。使用原位透射电子显微镜,从单斜 α-Ag 2 Te 到面心立方b -Ag 2的相变直接观察到 Te 伴随着电阻的变化。Ag +离子的扩散调节 Ag +离子空位的局部密度,导致电导率发生变化并影响阈值电压以触发相变。在电场驱动的相变过程中,来自低对称性α-Ag 2 Te(指反铁电结构)的自发局域多重极化在立方b -Ag 2 Te(指顺电结构)中消失。薄Ag 2的电阻突变由相变引起并由施加的电场调制的 Te 证明了其作为低能耗易失性存储器和忆阻器中功能材料的巨大潜力。