当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Light-Induced Ammonia Generation over Defective Carbon Nitride Modified with Pyrite
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-09-20 , DOI: 10.1002/aenm.202202403 Judith Zander 1 , Jana Timm 1 , Morten Weiss 1 , Roland Marschall 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-09-20 , DOI: 10.1002/aenm.202202403 Judith Zander 1 , Jana Timm 1 , Morten Weiss 1 , Roland Marschall 1
Affiliation
Photocatalytic nitrogen fixation under ambient conditions is currently widely explored in an attempt to develop a sustainable alternative for the Haber–Bosch process. In this work, defect-rich carbon nitride, one of the most investigated photocatalysts reported in literature for ammonia generation, is combined with earth-abundant and bioinspired FeS2 to improve the activity for ammonia production. By this combination, an activity enhancement of ≈400% compared to unmodified carbon nitride is achieved. The optimal FeS2 loading is established to be 1 wt%, with ammonia yields of up to 800 µg L−1 after irradiation for 7 h. By detailed material characterization of the electronic and material properties of the composites before and after the photocatalytic reaction, it is revealed that NH3 generation occurs not photocatalytically from N2, but via a light-induced reduction of N–CN groups adjacent to nitrogen vacancies in the structure of defect-rich carbon nitride. FeS2 acts similar to a cocatalyst, enhancing the ammonia yield by π-back-donation from Fe-centers to the imine nitrogen of the defect-rich carbon nitride, thereby activating the structure and boosting the ammonia generation from cyano groups.
中文翻译:
黄铁矿改性缺陷氮化碳的光致氨生成
环境条件下的光催化固氮目前被广泛探索,以试图开发一种可持续的 Haber-Bosch 过程替代方案。在这项工作中,富含缺陷的氮化碳是文献中报道的用于氨生成的研究最多的光催化剂之一,它与地球上丰富的生物启发的 FeS 2相结合,以提高氨生成的活性。通过这种组合,与未改性的氮化碳相比,活性提高了约 400%。最佳 FeS 2载量确定为 1 wt%,氨产量高达 800 µg L −1照射 7 h 后。通过对光催化反应前后复合材料的电子和材料特性进行详细的材料表征,揭示了 NH 3的生成不是通过 N 2光催化产生的,而是通过与氮相邻的 N–CN 基团的光诱导还原产生的富含缺陷的氮化碳结构中的空位。FeS 2的作用类似于助催化剂,通过从 Fe 中心向富含缺陷的氮化碳的亚胺氮进行 π 回馈来提高氨产率,从而激活结构并促进氰基产生氨。
更新日期:2022-09-20
中文翻译:
黄铁矿改性缺陷氮化碳的光致氨生成
环境条件下的光催化固氮目前被广泛探索,以试图开发一种可持续的 Haber-Bosch 过程替代方案。在这项工作中,富含缺陷的氮化碳是文献中报道的用于氨生成的研究最多的光催化剂之一,它与地球上丰富的生物启发的 FeS 2相结合,以提高氨生成的活性。通过这种组合,与未改性的氮化碳相比,活性提高了约 400%。最佳 FeS 2载量确定为 1 wt%,氨产量高达 800 µg L −1照射 7 h 后。通过对光催化反应前后复合材料的电子和材料特性进行详细的材料表征,揭示了 NH 3的生成不是通过 N 2光催化产生的,而是通过与氮相邻的 N–CN 基团的光诱导还原产生的富含缺陷的氮化碳结构中的空位。FeS 2的作用类似于助催化剂,通过从 Fe 中心向富含缺陷的氮化碳的亚胺氮进行 π 回馈来提高氨产率,从而激活结构并促进氰基产生氨。