当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Phase-Specific Vapor–Liquid–Solid Growth of GeSe and GeSe2 van der Waals Nanoribbons and Formation of GeSe–GeSe2 Heterostructures
Chemistry of Materials ( IF 7.2 ) Pub Date : 2022-09-20 , DOI: 10.1021/acs.chemmater.2c02162 Eli Sutter 1, 2 , Jacob S. French 3 , Peter Sutter 3
Chemistry of Materials ( IF 7.2 ) Pub Date : 2022-09-20 , DOI: 10.1021/acs.chemmater.2c02162 Eli Sutter 1, 2 , Jacob S. French 3 , Peter Sutter 3
Affiliation
Group IV (Ge, Sn) chalcogenides differ from most other two-dimensional (2D)/layered semiconductors in their ability to crystallize both as stable mono- and dichalcogenides. The associated diversity in structure and properties presents the challenge of identifying conditions for the selective growth of the different crystalline phases, as well as opportunities for phase conversion and materials integration/interface formation in heterostructures. Here, we discuss the phase-selective synthesis of free-standing GeSe and GeSe2 nanoribbons in a vapor–liquid–solid growth process over Au catalyst nanoparticles. Electron microscopy shows that the two types of ribbons adopt high-quality van der Waals structures with layering in the ribbon plane and with the ribbon axis aligned with the b-axis of GeSe and GeSe2, respectively. Nonspecific growth gives rise to a tapered morphology and, in the case of GeSe2, leads to nucleation of misoriented crystallites on the ribbon surface. The partial transformation of GeSe ribbons by selenization, finally reacts the outermost layers and edges to GeSe2, thus producing GeSe–GeSe2 core–shell heterostructures. Cathodoluminescence spectroscopy of as-grown GeSe ribbons and of GeSe–GeSe2 hybrids shows a marked enhancement of the luminescence intensity due to surface passivation by wide-band gap GeSe2 (Eg = 2.5 eV). Our results support applications of germanium mono- and dichalcogenides as well as their heterostructures in areas such as optoelectronics and photovoltaics.
中文翻译:
GeSe 和 GeSe2 范德华纳米带的特定相汽-液-固生长和 GeSe-GeSe2 异质结构的形成
IV 族 (Ge, Sn) 硫属化物与大多数其他二维 (2D)/层状半导体的不同之处在于它们能够以稳定的单硫属和双硫属化物结晶。结构和性质的相关多样性提出了确定不同晶相选择性生长的条件的挑战,以及异质结构中相转换和材料集成/界面形成的机会。在这里,我们讨论了在金催化剂纳米粒子上的气相-液-固生长过程中相选择性合成独立的 GeSe 和 GeSe 2纳米带。电子显微镜显示,这两种碳带均采用高质量范德华结构,在碳带平面内分层,碳带轴与b轴对齐。GeSe 和 GeSe 2的-轴。非特异性生长产生锥形形态,并且在 GeSe 2的情况下,导致带表面上取向错误的微晶成核。通过硒化对 GeSe 带的部分转变,最终使最外层和边缘与 GeSe 2反应,从而产生 GeSe-GeSe 2核-壳异质结构。生长的 GeSe 带和 GeSe-GeSe 2杂化物的阴极发光光谱表明,由于宽带隙 GeSe 2 ( E g= 2.5 电子伏特)。我们的结果支持锗单和二硫属化物及其异质结构在光电和光伏等领域的应用。
更新日期:2022-09-20
中文翻译:
GeSe 和 GeSe2 范德华纳米带的特定相汽-液-固生长和 GeSe-GeSe2 异质结构的形成
IV 族 (Ge, Sn) 硫属化物与大多数其他二维 (2D)/层状半导体的不同之处在于它们能够以稳定的单硫属和双硫属化物结晶。结构和性质的相关多样性提出了确定不同晶相选择性生长的条件的挑战,以及异质结构中相转换和材料集成/界面形成的机会。在这里,我们讨论了在金催化剂纳米粒子上的气相-液-固生长过程中相选择性合成独立的 GeSe 和 GeSe 2纳米带。电子显微镜显示,这两种碳带均采用高质量范德华结构,在碳带平面内分层,碳带轴与b轴对齐。GeSe 和 GeSe 2的-轴。非特异性生长产生锥形形态,并且在 GeSe 2的情况下,导致带表面上取向错误的微晶成核。通过硒化对 GeSe 带的部分转变,最终使最外层和边缘与 GeSe 2反应,从而产生 GeSe-GeSe 2核-壳异质结构。生长的 GeSe 带和 GeSe-GeSe 2杂化物的阴极发光光谱表明,由于宽带隙 GeSe 2 ( E g= 2.5 电子伏特)。我们的结果支持锗单和二硫属化物及其异质结构在光电和光伏等领域的应用。