当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of anodic electron transfer chain based on CuCl2/TiOSO4 synergetic mediators for highly efficient conversion of biomass wastes into electricity at low temperature
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-09-17 , DOI: 10.1016/j.cej.2022.139266
Chenxing She , Xihong Zu , Zhiheng Yang , Liheng Chen , Zixin Xie , Hao Yang , Dongjie Yang , Guobin Yi , Yanlin Qin , Xuliang Lin , Wenli Zhang , Huafeng Dong , Xueqing Qiu

Biomass flow fuel cells (BFFCs) are promising alternatives for large-scale conversion of biomass into electricity at low temperature. However, most of them are based on single redox-active materials in anolyte which have limited capacity density and electron transfer rate, resulting in many natural biomass residues can’t generate electricity rapidly and efficiently. Herein, we develop a new anodic electron transfer chain based on CuCl2/TiOSO4 synergetic mediators for BFFCs. The density functional theory (DFT) simulation and experiment results show that TiO2+/Ti3+ redox couple works as an intermediate medium to construct a CuCl2/TiOSO4 synergetic electron transfer chain, which strengthens the electron transfer rate between anolyte and graphite felt (GF) electrode. The CuCl2/TiOSO4 synergetic mediators can efficiently and rapidly degrade glucose, industrial lignin and other natural biomasses at low temperature, and extract electrons simultaneously for generating electricity. The maximum power density (Pmax) of CuCl2/TiOSO4-based BFFC is 146.7 Mw·cm-2 when the anolyte is pre-reacted at 90 ℃ for 1h with glucose as fuel and paired with VO2+/VO2+ catholyte. And the fuel cell can discharge electricity continuously and stably for more than 6 hours at 400 mA·cm-2. Furthermore, it can stably power LED pattern with 92 bulbs. Besides, when the CuCl2/TiOSO4-based BFFC utilizes sodium lignosulfonate as fuel, its Pmax is 55.1 mW·cm-2, and the BFFC can discharge electricity stably for more than 1 h at high output current density of 1.3 A·cm-2. This work provides a promising approach for application in direct biomass wastes power generation.



中文翻译:

构建基于CuCl2/TiOSO4协同介质的阳极电子传递链,实现生物质废弃物低温高效发电

生物质流燃料电池(BFFC)是在低温下将生物质大规模转化为电能的有前途的替代品。然而,它们大多基于阳极液中的单一氧化还原活性材料,容量密度和电子转移率有限,导致许多天然生物质残渣不能快速高效地发电。在此,我们开发了一种基于 CuCl 2 / TiOSO 4协同介质的新型阳极电子转移链,用于 BFFC。密度泛函理论(DFT)模拟和实验结果表明,TiO 2+ /Ti 3+氧化还原对作为中间介质构建CuCl 2 /TiOSO 4协同电子传递链,增强阳极液和石墨毡 (GF) 电极之间的电子传递速率。CuCl 2 /TiOSO 4协同介质可以在低温下高效快速地降解葡萄糖、工业木质素等天然生物质,同时提取电子进行发电。CuCl 2 / TiOSO 4基BFFC的最大功率密度(P max )为146.7 Mw·cm -2阳极液以葡萄糖为燃料在90 ℃下预反应1h并与VO 2 + /VO 2+配对阴极液。该燃料电池在400 mA·cm -2下可连续稳定放电6小时以上。此外,它可以稳定地为 92 个灯泡的 LED 图案供电。此外,CuCl 2 / TiOSO 4基BFFC以木质素磺酸钠为燃料时,其P max为55.1 mW·cm -2,在1.3 A·高输出电流密度下,BFFC可稳定放电1小时以上。厘米-2。这项工作为直接生物质废物发电的应用提供了一种有前景的方法。

更新日期:2022-09-17
down
wechat
bug