当前位置:
X-MOL 学术
›
Energy Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
(Near-) Infrared Drying of Lithium-Ion Battery Electrodes: Influence of Energy Input on Process Speed and Electrode Adhesion
Energy Technology ( IF 3.6 ) Pub Date : 2022-09-16 , DOI: 10.1002/ente.202200785 Andreas Altvater 1 , Thilo Heckmann 1 , Jochen C. Eser 1 , Sandro Spiegel 1 , Philip Scharfer 1 , Wilhelm Schabel 1
Energy Technology ( IF 3.6 ) Pub Date : 2022-09-16 , DOI: 10.1002/ente.202200785 Andreas Altvater 1 , Thilo Heckmann 1 , Jochen C. Eser 1 , Sandro Spiegel 1 , Philip Scharfer 1 , Wilhelm Schabel 1
Affiliation
The drying of electrodes represents a critical process step in the production of lithium-ion batteries. In this process step, unfavorably adjusted drying conditions can result in deteriorated electrode properties. Furthermore, the process speed is restricted by limited heat and mass transfer in purely convective drying. To counteract those effects, energy input by near-infrared (NIR) radiation is a promising approach. Herein, analytical considerations are carried out to demonstrate the suitability of infrared radiation with regard to achievable electrode temperatures and drying rates. In an experimental approach, aqueous processed graphite anodes are dried with an NIR module, varying the power and the amount of convection for different experiments. The temperature profiles of the electrodes and the drying rates are measured and analyzed, and the electrodes are subsequently characterized using adhesion measurements. The results obtained show that energy input by NIR radiation during the drying of electrodes can lead to an increased drying speed, electrode temperature during drying, and adhesion force of the dry electrode. These findings indicate that the binder distribution during NIR drying is advantageous in terms of electrode adhesion, compared with convectively dried electrodes produced at comparable drying rates, positioning the process promisingly with regard to high throughput rates.
中文翻译:
锂离子电池电极的(近)红外线干燥:能量输入对工艺速度和电极附着力的影响
电极干燥是锂离子电池生产中的关键工艺步骤。在此工艺步骤中,不利地调节干燥条件会导致电极性能劣化。此外,过程速度受到纯对流干燥中有限的传热和传质的限制。为了抵消这些影响,近红外 (NIR) 辐射的能量输入是一种很有前途的方法。在此,进行分析考虑以证明红外辐射对于可实现的电极温度和干燥速率的适用性。在实验方法中,水处理石墨阳极用 NIR 模块干燥,为不同的实验改变功率和对流量。测量和分析电极的温度曲线和干燥速率,随后使用粘附测量对电极进行表征。获得的结果表明,在电极干燥过程中通过近红外辐射输入的能量可以导致干燥速度、干燥过程中的电极温度和干电极的粘附力增加。这些发现表明,与以可比干燥速率生产的对流干燥电极相比,NIR 干燥过程中的粘合剂分布在电极粘附方面具有优势,从而有望在高生产率方面定位该过程。
更新日期:2022-09-16
中文翻译:
锂离子电池电极的(近)红外线干燥:能量输入对工艺速度和电极附着力的影响
电极干燥是锂离子电池生产中的关键工艺步骤。在此工艺步骤中,不利地调节干燥条件会导致电极性能劣化。此外,过程速度受到纯对流干燥中有限的传热和传质的限制。为了抵消这些影响,近红外 (NIR) 辐射的能量输入是一种很有前途的方法。在此,进行分析考虑以证明红外辐射对于可实现的电极温度和干燥速率的适用性。在实验方法中,水处理石墨阳极用 NIR 模块干燥,为不同的实验改变功率和对流量。测量和分析电极的温度曲线和干燥速率,随后使用粘附测量对电极进行表征。获得的结果表明,在电极干燥过程中通过近红外辐射输入的能量可以导致干燥速度、干燥过程中的电极温度和干电极的粘附力增加。这些发现表明,与以可比干燥速率生产的对流干燥电极相比,NIR 干燥过程中的粘合剂分布在电极粘附方面具有优势,从而有望在高生产率方面定位该过程。