当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of manganese borate/iron carbide encapsulated in nitrogen and boron co-doped carbon nanowires as the accelerated alkaline full water splitting bi-functional electrocatalysts
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2022-09-16 , DOI: 10.1016/j.jcis.2022.09.068
Zhuo Liu 1 , Fei Guo 1 , Lei Cheng 2 , Xiangjie Bo 3 , Tingting Liu 4 , Mian Li 1
Affiliation  

With high prices of precious metals (such as platinum, iridium, and ruthenium) and transition metals (such as cobalt and nickel), the design of high-efficiency and low-cost non-precious-metal-based catalysts using iron (Fe) and manganese (Mn) metals for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are critical for commercial applications of water splitting devices. In the study, without using any template or surfactant, we successfully designed novel cross-linked manganese borate (Mn3(BO3)2) and iron carbide (Fe3C) embedded into boron (B) and nitrogen (N) co-doped three-dimensional (3D) hierarchically meso/macroporous carbon nanowires (denoted as FexMny@BN-PCFs). Electrochemical test results showed that the HER and OER catalytic activities of Fe1Mn1@BN-PCFs were close to those of 20 wt% Pt/C and RuO2. For full water splitting, (-) Fe1Mn1@BN-PCFs||Fe1Mn1@BN-PCF (+) cell achieved a current density of 10 mA cm−2 at a cell voltage of 1.622 V, which was 14.2 mV larger than that of (-) 20 wt% Pt/C||RuO2 (+) benchmark. The synergistic effect of 3D hierarchically meso/macroporous architectures, excellent charge transport capacity, and abundant active centers (cross-linked Mn3(BO3)2/Fe3C@BNC, BC3, pyridinic-N, Msingle bondNsingle bondC, and graphitic-N) enhanced the water splitting catalytic activity of Fe1Mn1@BN-PCFs. The (-) Fe1Mn1@BN-PCFs||Fe1Mn1@BN-PCF (+) cell exhibited excellent stability owing to the superior structural and chemical stabilities of 3D hierarchically porous Fe1Mn1@BN-PCFs.



中文翻译:

氮硼共掺杂碳纳米线封装硼酸锰/碳化铁作为加速碱性全水分解双功能电催化剂的制备

随着贵金属(如铂、铱、钌)和过渡金属(如钴、镍)价格居高不下,利用铁(Fe)设计高效、低成本的非贵金属基催化剂用于析氢反应(HER)和析氧反应(OER)的锰(Mn)金属对于水分解装置的商业应用至关重要。在研究中,我们在不使用任何模板或表面活性剂的情况下,成功设计了新型交联硼酸锰(Mn 3 (BO 3 ) 2)和碳化铁(Fe 3 C)嵌入硼(B)和氮(N)共聚体中。掺杂三维(3D)分级介孔/大孔碳纳米线(表示为 Fe x Mn y @BN-PCFs)。电化学测试结果表明,Fe 1 Mn 1 @BN-PCFs的 HER 和 OER 催化活性与 20 wt% Pt/C 和 RuO 2接近。对于完全水分解,(-) Fe 1 Mn 1 @BN-PCFs||Fe 1 Mn 1 @BN-PCF (+)电池在1.622 V的电池电压下实现了10 mA cm -2的电流密度,这是比 (-) 20 wt% Pt/C||RuO 2 (+) 基准大 14.2 mV。3D分级介孔/大孔结构、优异的电荷传输能力和丰富的活性中心(交联Mn 3 (BO 3 ) 2 /Fe 3 C@BNC、BC 3、吡啶-N、M 单键N 单键C和石墨-N)增强了Fe 1 Mn 1 @BN-PCFs的水分解催化活性。由于3D分级多孔Fe 1 Mn 1 @BN-PCFs优异的结构和化学稳定性,(-) Fe 1 Mn 1 @BN-PCFs||Fe 1 Mn 1 @BN-PCF (+)电池表现出优异的稳定性。

更新日期:2022-09-16
down
wechat
bug