当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chitin-Derived Heteroatom-Doped Porous Carbon for High-Performance Room-Temperature Na-S Batteries
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2022-09-15 , DOI: 10.1021/acsaem.2c02417
Xun Sun 1 , Xiaoyang Chen 1 , Zhe Wang 1 , Xinping Ai 1 , Yuliang Cao 1 , Jinping Zhou 1
Affiliation  

Porous carbon derived from biomass is considered as a promising active electrode material for the next-generation energy storage systems. Herein, carbon particles with a hierarchical structure are fabricated from chitin through a facile pyrolysis/activation process, which is loaded with sulfur (S) as the cathode material in a room-temperature sodium–sulfur (RT Na-S) battery. Owing to the large specific surface area, enriched microporous structure, and nitrogen and oxygen-self-doping, the obtained carbon particles can not only provide abundant active sites for energy storage and rapid ion transport channels but also improve the utilization of S. Consequently, the S-cathode achieves an excellent cycle stability of 230 mAh g–1 at a current density of 1 A g–1 after 2000 cycles with a capacity retention of ∼94%. According to the kinetic analysis and density functional theory calculation, the unique and robust structure of carbon particles enables physical encapsulation and chemical confinement of S and polysulfides (PSs), which can strengthen Na+ adsorption and diffusion. Therefore, this work established a universal technique for producing high-performance S-cathode materials, which may offer the potential for economical energy storage in RT Na-S batteries.

中文翻译:

用于高性能室温钠硫电池的几丁质衍生杂原子掺杂多孔碳

源自生物质的多孔碳被认为是用于下一代储能系统的有前途的活性电极材料。在此,具有分级结构的碳颗粒是由几丁质通过简单的热解/活化过程制成的,在室温钠硫 (RT Na-S) 电池中负载硫 (S) 作为正极材料。由于具有较大的比表面积、丰富的微孔结构以及氮和氧的自掺杂,得到的碳颗粒不仅可以为储能和快速离子传输通道提供丰富的活性位点,还可以提高硫的利用率。因此, S 阴极在 1 A g –1的电流密度下实现了 230 mAh g –1的出色循环稳定性2000 次循环后,容量保持率约为 94%。根据动力学分析和密度泛函理论计算,碳颗粒独特而坚固的结构能够对S和多硫化物(PSs)进行物理包封和化学限制,从而增强Na +的吸附和扩散。因此,这项工作建立了一种生产高性能 S 阴极材料的通用技术,这可能为 RT Na-S 电池的经济储能提供潜力。
更新日期:2022-09-15
down
wechat
bug