当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compressive-Strain-Facilitated Fast Oxygen Migration with Reversible Topotactic Transformation in La0.5Sr0.5CoOx via All-Solid-State Electrolyte Gating
ACS Nano ( IF 15.8 ) Pub Date : 2022-09-15 , DOI: 10.1021/acsnano.2c05243
Zhuo Yin 1, 2 , Jianlin Wang 1, 2 , Jing Wang 1, 2, 3 , Jia Li 1, 2 , Houbo Zhou 1, 2 , Cheng Zhang 1, 2, 4 , Hui Zhang 5 , Jine Zhang 5 , Feiran Shen 6, 7 , Jiazheng Hao 6, 7 , Zibing Yu 1, 2 , Yihong Gao 1, 2 , Yangxin Wang 1, 7 , Yunzhong Chen 1 , Ji-Rong Sun 1, 2, 8 , Xuedong Bai 1, 2, 8 , Jian-Tao Wang 1, 2, 8 , Fengxia Hu 1, 2, 8 , Tong-Yun Zhao 1, 9 , Baogen Shen 1, 2, 4, 9
Affiliation  

Modifying the crystal structure and corresponding functional properties of complex oxides by regulating their oxygen content has promising applications in energy conversion and chemical looping, where controlling oxygen migration plays an important role. Therefore, finding an efficacious and feasible method to facilitate oxygen migration has become a critical requirement for practical applications. Here, we report a compressive-strain-facilitated oxygen migration with reversible topotactic phase transformation (RTPT) in La0.5Sr0.5CoOx films based on all-solid-state electrolyte gating modulation. With the lattice strain changing from tensile to compressive strain, significant reductions in modulation duration (∼72%) and threshold voltage (∼70%) for the RTPT were observed, indicating great promotion of RTPT by compressive strain. Density functional theory calculations verify that such compressive-strain-facilitated efficient RTPT comes from significant reduction of the oxygen migration barrier in compressive-strained films. Further, ac-STEM, EELS, and sXAS investigations reveal that varying strain from tensile to compressive enhances the Co 3d band filling, thereby suppressing the Co–O hybrid bond in oxygen vacancy channels, elucidating the micro-origin of such compressive-strain-facilitated oxygen migration. Our work suggests that controlling electronic orbital occupation of Co ions in oxygen vacancy channels may help facilitate oxygen migration, providing valuable insights and practical guidance for achieving highly efficient oxygen-migration-related chemical looping and energy conversion with complex oxides.

中文翻译:

通过全固态电解质门控在 La0.5Sr0.5CoOx 中具有可逆拓扑转变的压缩应变促进快速氧迁移

通过调节氧含量来改变复杂氧化物的晶体结构和相应的功能特性在能量转换和化学循环中具有广阔的应用前景,其中控制氧迁移起着重要作用。因此,寻找一种有效可行的促进氧迁移的方法已成为实际应用的关键要求。在这里,我们报告了在 La 0.5 Sr 0.5 CoO x中具有可逆拓扑相变 (RTPT) 的压缩应变促进氧迁移基于全固态电解质门控调制的薄膜。随着晶格应变从拉伸应变变为压缩应变,观察到 RTPT 的调制持续时间(~72%)和阈值电压(~70%)显着降低,表明压缩应变对 RTPT 的促进作用很大。密度泛函理论计算证实,这种压缩应变促进的有效 RTPT 来自压缩应变薄膜中氧迁移势垒的显着降低。此外,ac-STEM、EELS 和 sXAS 研究表明,从拉伸应变到压缩应变的变化增强了 Co 3d 带的填充,从而抑制了氧空位通道中的 Co-O 杂化键,阐明了这种压缩应变的微观起源。促进氧气迁移。
更新日期:2022-09-15
down
wechat
bug