当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Pt Atomic Layers with Tensile Strain and Rich Defects Boost Ethanol Electrooxidation
Nano Letters ( IF 9.6 ) Pub Date : 2022-09-14 , DOI: 10.1021/acs.nanolett.2c02572 Yuanjun Chen 1 , Jiajing Pei 2 , Zhe Chen 3 , Ang Li 4 , Shufang Ji 1 , Hongpan Rong 5 , Qian Xu 6 , Tao Wang 3 , Aojie Zhang 7 , Haolin Tang 7 , Junfa Zhu 6 , Xiaodong Han 4 , Zhongbin Zhuang 2 , Gang Zhou 8 , Dingsheng Wang 1
Nano Letters ( IF 9.6 ) Pub Date : 2022-09-14 , DOI: 10.1021/acs.nanolett.2c02572 Yuanjun Chen 1 , Jiajing Pei 2 , Zhe Chen 3 , Ang Li 4 , Shufang Ji 1 , Hongpan Rong 5 , Qian Xu 6 , Tao Wang 3 , Aojie Zhang 7 , Haolin Tang 7 , Junfa Zhu 6 , Xiaodong Han 4 , Zhongbin Zhuang 2 , Gang Zhou 8 , Dingsheng Wang 1
Affiliation
Surface and strain engineering are two effective strategies to improve performance; however, synergetic controls of surface and strain effects remains a grand challenge. Herein, we report a highly efficient and stable electrocatalyst with defect-rich Pt atomic layers coating an ordered Pt3Sn intermetallic core. Pt atomic layers enable the generation of 4.4% tensile strain along the [001] direction. Benefiting from synergetic controls of surface and strain engineering, Pt atomic-layer catalyst (Ptatomic-layer) achieves a remarkable enhancement on ethanol electrooxidation performance with excellent specific activity of 5.83 mA cm–2 and mass activity of 1166.6 mA mg Pt–1, which is 10.6 and 3.6 times higher than the commercial Pt/C, respectively. Moreover, the intermetallic core endows Ptatomic-layer with outstanding durability. In situ infrared reflection–absorption spectroscopy as well as density functional theory calculations reveal that tensile strain and rich defects of Ptatomci-layer facilitate to break C–C bond for complete ethanol oxidation for enhanced performance.
中文翻译:
具有拉伸应变和丰富缺陷的 Pt 原子层促进乙醇电氧化
表面和应变工程是提高性能的两种有效策略;然而,表面和应变效应的协同控制仍然是一个巨大的挑战。在此,我们报告了一种高效且稳定的电催化剂,该电催化剂具有富含缺陷的 Pt 原子层覆盖有序的 Pt 3 Sn 金属间化合物核。Pt 原子层能够沿 [001] 方向产生 4.4% 的拉伸应变。得益于表面和应变工程的协同控制,Pt 原子层催化剂 (Pt atomic-layer ) 显着提高了乙醇电氧化性能,具有 5.83 mA cm -2的优异比活性和 1166.6 mA mg Pt -1的质量活性,分别是商用 Pt/C 的 10.6 倍和 3.6 倍。此外,金属间化合物核赋予 Pt原子层出色的耐久性。原位红外反射-吸收光谱以及密度泛函理论计算表明,拉伸应变和 Pt原子层的丰富缺陷有助于破坏 C-C 键以实现乙醇完全氧化,从而提高性能。
更新日期:2022-09-14
中文翻译:
具有拉伸应变和丰富缺陷的 Pt 原子层促进乙醇电氧化
表面和应变工程是提高性能的两种有效策略;然而,表面和应变效应的协同控制仍然是一个巨大的挑战。在此,我们报告了一种高效且稳定的电催化剂,该电催化剂具有富含缺陷的 Pt 原子层覆盖有序的 Pt 3 Sn 金属间化合物核。Pt 原子层能够沿 [001] 方向产生 4.4% 的拉伸应变。得益于表面和应变工程的协同控制,Pt 原子层催化剂 (Pt atomic-layer ) 显着提高了乙醇电氧化性能,具有 5.83 mA cm -2的优异比活性和 1166.6 mA mg Pt -1的质量活性,分别是商用 Pt/C 的 10.6 倍和 3.6 倍。此外,金属间化合物核赋予 Pt原子层出色的耐久性。原位红外反射-吸收光谱以及密度泛函理论计算表明,拉伸应变和 Pt原子层的丰富缺陷有助于破坏 C-C 键以实现乙醇完全氧化,从而提高性能。