当前位置:
X-MOL 学术
›
J. Phys. Org. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Substituent effects on the stretching vibration frequencies of C=C bridge bond in aryl ethylene with furyl or thienyl group
Journal of Physical Organic Chemistry ( IF 1.9 ) Pub Date : 2022-09-12 , DOI: 10.1002/poc.4433 Linyan Wang 1 , Chaotun Cao 2 , Junyan Qu 2 , Chenzhong Cao 2
Journal of Physical Organic Chemistry ( IF 1.9 ) Pub Date : 2022-09-12 , DOI: 10.1002/poc.4433 Linyan Wang 1 , Chaotun Cao 2 , Junyan Qu 2 , Chenzhong Cao 2
Affiliation
To explore the substituent effects on the stretching vibration frequencies νC=C of C=C bridge bond in 1-furyl/thienyl-2-aryl ethylene XCH=CHArYs, 60 samples of XCH=CHArYs were synthesized, and their infrared absorption spectra were recorded. The regression analyses between the νC=C values of XCH=CHArYs and the substituent parameters of X and Y were made in detail. Finally, an optimality equation (shown as Equation 3) quantifying the νC=C values of XCH=CHArYs was obtained. It shows that the substituent effects on the νC=C values of XCH=CHArYs mainly reflect in Hammett constant of X and the excited-state substituent constants of X and Y. Among the parameters in Equation (3), the excited-state substituent constant of X contributes the most to the νC=C values of XCH=CHArYs as seen from the fraction contributions. On the whole, the contribution of X to the νC=C values of XCH=CHArYs is larger than that of Y.
中文翻译:
取代基对含呋喃基或噻吩基芳基乙烯C=C桥键伸缩振动频率的影响
为探究取代基对1-呋喃基/噻吩基-2-芳基乙烯XCH=CHArYs中C=C桥键的伸缩振动频率ν C=C的影响,合成了60个XCH=CHArYs样品,并得到了它们的红外吸收光谱记录。对XCH=CHArYs的ν C=C值与X、Y的取代基参数进行了详细的回归分析。最后,获得了量化XCH=CHArYs的 ν C=C值的最优方程(如方程 3 所示) 。这表明取代基对 ν C=C的影响XCH=CHArYs的取值主要体现在X的哈米特常数和X、Y的激发态取代基常数上。在式(3)的参数中,X的激发态取代基常数对ν C=C的贡献最大从分数贡献中可以看出 XCH=CHArYs 的值。总体上,X对XCH=CHArYs的νC =C值的贡献大于Y。
更新日期:2022-09-12
中文翻译:
取代基对含呋喃基或噻吩基芳基乙烯C=C桥键伸缩振动频率的影响
为探究取代基对1-呋喃基/噻吩基-2-芳基乙烯XCH=CHArYs中C=C桥键的伸缩振动频率ν C=C的影响,合成了60个XCH=CHArYs样品,并得到了它们的红外吸收光谱记录。对XCH=CHArYs的ν C=C值与X、Y的取代基参数进行了详细的回归分析。最后,获得了量化XCH=CHArYs的 ν C=C值的最优方程(如方程 3 所示) 。这表明取代基对 ν C=C的影响XCH=CHArYs的取值主要体现在X的哈米特常数和X、Y的激发态取代基常数上。在式(3)的参数中,X的激发态取代基常数对ν C=C的贡献最大从分数贡献中可以看出 XCH=CHArYs 的值。总体上,X对XCH=CHArYs的νC =C值的贡献大于Y。