Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Design of superior electrostriction in BaTiO3-based lead-free relaxors via the formation of polarization nanoclusters
InfoMat ( IF 22.7 ) Pub Date : 2022-09-08 , DOI: 10.1002/inf2.12362 Lu Wang 1, 2 , He Qi 1, 2 , Shiqing Deng 1, 3 , Lingzhi Cao 1, 3 , Hui Liu 1, 3 , Shuxian Hu 1, 3 , Jun Chen 1, 2
InfoMat ( IF 22.7 ) Pub Date : 2022-09-08 , DOI: 10.1002/inf2.12362 Lu Wang 1, 2 , He Qi 1, 2 , Shiqing Deng 1, 3 , Lingzhi Cao 1, 3 , Hui Liu 1, 3 , Shuxian Hu 1, 3 , Jun Chen 1, 2
Affiliation
Electrostrictive materials have wide applications in modern high-precision electronic devices. Driven by growing environmental concerns, there is demand for lead-free materials with superior electrostriction behaviors. In this study, we demonstrate a record-high electrostrictive coefficient of ~0.0712 m4 C−2 in perovskite ferroelectric ceramics, along with hysteresis-free strain as well as excellent frequency and thermal stabilities, in lead-free BaTiO3-based ceramics through a polarization nanocluster design. By appropriately introducing Li+ and Bi3+ into the BaTiO3 lattice matrix, the long-range ferroelectric ordering can be broken, and polarization nanoclusters can be formed, resulting in a relaxor state with concurrently suppressed polarization and maintained electro-strain. A three-dimensional atomic model constructed using advanced neutron total-scattering data combined with the reverse Monte Carlo method indicates the existence of Bi and Li segregations at the subnanometer scale, which confirms the prediction made by density functional theory calculations. Such a short-range chemical order destroys the long-range ferroelectric order of the off-centered Ti polar displacements and leads to the embedding of Li+/Bi3+-rich polar nanoregions in the Ba2+-rich polarization disorder matrix. Further, a completely reversible electric-field-induced lattice strain is observed, giving rise to pure electrostriction without hysteresis behavior. This work provides a novel strategy for developing lead-free relaxor ferroelectrics with high electrostriction performance.
中文翻译:
通过形成极化纳米团簇设计基于 BaTiO3 的无铅弛豫器的优异电致伸缩
电致伸缩材料在现代高精度电子设备中有着广泛的应用。在日益增长的环境问题的推动下,需要具有优异电致伸缩行为的无铅材料。在这项研究中,我们展示了钙钛矿铁电陶瓷中 ~0.0712 m 4 C −2的创纪录高电致伸缩系数,以及无滞后应变以及无铅 BaTiO 3基陶瓷中出色的频率和热稳定性,通过极化纳米团簇设计。通过在 BaTiO 3中适当引入 Li +和 Bi 3+晶格矩阵,可以打破长程铁电有序,可以形成极化纳米团簇,导致弛豫态同时抑制极化和保持电应变。利用先进的中子全散射数据结合反向蒙特卡洛方法构建的三维原子模型表明在亚纳米尺度上存在Bi和Li偏析,证实了密度泛函理论计算的预测。这种短程化学有序破坏了偏心 Ti 极位移的长程铁电有序,导致在 Ba 2+中嵌入富含 Li + /Bi 3+的极性纳米区域-丰富的极化无序矩阵。此外,观察到完全可逆的电场引起的晶格应变,从而产生没有滞后行为的纯电致伸缩。这项工作为开发具有高电致伸缩性能的无铅弛豫铁电体提供了一种新策略。
更新日期:2022-09-08
中文翻译:
通过形成极化纳米团簇设计基于 BaTiO3 的无铅弛豫器的优异电致伸缩
电致伸缩材料在现代高精度电子设备中有着广泛的应用。在日益增长的环境问题的推动下,需要具有优异电致伸缩行为的无铅材料。在这项研究中,我们展示了钙钛矿铁电陶瓷中 ~0.0712 m 4 C −2的创纪录高电致伸缩系数,以及无滞后应变以及无铅 BaTiO 3基陶瓷中出色的频率和热稳定性,通过极化纳米团簇设计。通过在 BaTiO 3中适当引入 Li +和 Bi 3+晶格矩阵,可以打破长程铁电有序,可以形成极化纳米团簇,导致弛豫态同时抑制极化和保持电应变。利用先进的中子全散射数据结合反向蒙特卡洛方法构建的三维原子模型表明在亚纳米尺度上存在Bi和Li偏析,证实了密度泛函理论计算的预测。这种短程化学有序破坏了偏心 Ti 极位移的长程铁电有序,导致在 Ba 2+中嵌入富含 Li + /Bi 3+的极性纳米区域-丰富的极化无序矩阵。此外,观察到完全可逆的电场引起的晶格应变,从而产生没有滞后行为的纯电致伸缩。这项工作为开发具有高电致伸缩性能的无铅弛豫铁电体提供了一种新策略。