当前位置:
X-MOL 学术
›
Mater. Horiz.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrahigh energy storage performance of all-organic dielectrics at high-temperature by tuning the density and location of traps
Materials Horizons ( IF 12.2 ) Pub Date : 2022-09-09 , DOI: 10.1039/d2mh00912a Mengjia Feng 1, 2 , Yu Feng 1, 2 , Changhai Zhang 1, 2 , Tiandong Zhang 1, 2 , Qingguo Chen 1, 2 , Qingguo Chi 1, 2
Materials Horizons ( IF 12.2 ) Pub Date : 2022-09-09 , DOI: 10.1039/d2mh00912a Mengjia Feng 1, 2 , Yu Feng 1, 2 , Changhai Zhang 1, 2 , Tiandong Zhang 1, 2 , Qingguo Chen 1, 2 , Qingguo Chi 1, 2
Affiliation
Improving the tolerance of flexible polymers to extreme temperatures and electrical fields is critical to the development of advanced electrical and electronic systems. Suppressing carrier movement at high temperatures is one of the key methods to improve the high-temperature charging and discharging efficiency. In this work, a molecular semiconductor (ITIC) with high electron affinity energy is blended into the promising polymer polyetherimide (PEI). This molecular semiconductor will introduce traps in the dielectric that can trap carriers, thus achieving the effect of inhibiting carrier movement. Changing the concentration and position of the molecular semiconductor by electrospinning technology also means changing the density of the trap and the position of the trap layer. The effects of trap density and trap layer location on the high-temperature breakdown strength and energy storage properties of composite dielectrics are studied successively, and the structure of a composite with optimal high temperature energy storage properties is obtained. That is, the dielectric S-15-28 has an energy storage density (U) of 6.37 J cm−3 at a temperature of 150 °C with a charge–discharge efficiency (η) of 90%; it also has a U of 4.3 J cm−3 at a temperature of 180 °C with the η of 90%. A mechanism based on Mott and Gurney's law is proposed to explain the effect of trap parameters on leakage current. This work provides a new structural design idea to regulate the dielectric properties of all-organic dielectrics through trap distribution parameter optimization.
中文翻译:
通过调节陷阱的密度和位置实现全有机电介质在高温下的超高储能性能
提高柔性聚合物对极端温度和电场的耐受性对于开发先进的电气和电子系统至关重要。抑制高温下载流子运动是提高高温充放电效率的关键方法之一。在这项工作中,将具有高电子亲和能的分子半导体 (ITIC) 混合到有前途的聚合物聚醚酰亚胺 (PEI) 中。这种分子半导体会在电介质中引入陷阱,可以捕获载流子,从而达到抑制载流子运动的效果。通过静电纺丝技术改变分子半导体的浓度和位置也意味着改变陷阱的密度和陷阱层的位置。先后研究了陷阱密度和陷阱层位置对复合介质高温击穿强度和储能性能的影响,得到了高温储能性能最优的复合材料结构。也就是说,电介质S-15-28具有能量存储密度(U ) 在 150 °C 的温度下为 6.37 J cm -3,充放电效率 ( η ) 为 90%;它还在 180 °C 的温度下具有4.3 J cm -3的U , η为 90%。提出了一种基于莫特和格尼定律的机制来解释陷阱参数对漏电流的影响。该工作为通过陷阱分布参数优化调控全有机电介质的介电性能提供了一种新的结构设计思路。
更新日期:2022-09-09
中文翻译:
通过调节陷阱的密度和位置实现全有机电介质在高温下的超高储能性能
提高柔性聚合物对极端温度和电场的耐受性对于开发先进的电气和电子系统至关重要。抑制高温下载流子运动是提高高温充放电效率的关键方法之一。在这项工作中,将具有高电子亲和能的分子半导体 (ITIC) 混合到有前途的聚合物聚醚酰亚胺 (PEI) 中。这种分子半导体会在电介质中引入陷阱,可以捕获载流子,从而达到抑制载流子运动的效果。通过静电纺丝技术改变分子半导体的浓度和位置也意味着改变陷阱的密度和陷阱层的位置。先后研究了陷阱密度和陷阱层位置对复合介质高温击穿强度和储能性能的影响,得到了高温储能性能最优的复合材料结构。也就是说,电介质S-15-28具有能量存储密度(U ) 在 150 °C 的温度下为 6.37 J cm -3,充放电效率 ( η ) 为 90%;它还在 180 °C 的温度下具有4.3 J cm -3的U , η为 90%。提出了一种基于莫特和格尼定律的机制来解释陷阱参数对漏电流的影响。该工作为通过陷阱分布参数优化调控全有机电介质的介电性能提供了一种新的结构设计思路。