通过原位化学聚合方法在还原氧化石墨烯(RGO)/棉织物(CF)电极表面合成了多种形态的聚苯胺(PANI)纳米结构(即纳米球、纳米纤维、垂直纳米线和菜花状)。改变氧化剂/单体 (O/M) 摩尔比和氧化剂类型等合成参数,以研究表面形态对 PANI/RGO/CF 电极的超级电容性能的影响。此外,还评估了掺杂 PANI 的去掺杂过程对 PANI/RGO/CF 电极电化学性能的影响。发现O / M比和氧化剂类型强烈影响PANI纳米结构的成核速率,导致开发具有不同表面形态的电极,提供不同的电导率和储能性能。发现去掺杂工艺是一种不利的处理方法,会降低 PANI/RGO/CF 电极的电导率和电容性能。在 RGO/CF 表面上合成的完全掺杂的 PANI 使用过硫酸铵作为氧化剂,O/M 比为 0.5,形成了具有垂直 PANI 纳米线形态的电极,可提供最高的电化学性能。使用该电极组装的全固态柔性对称超级电容器可提供 35.9 Wh kg 的非凡能量密度 在 RGO/CF 表面上合成的完全掺杂的 PANI 使用过硫酸铵作为氧化剂,O/M 比为 0.5,形成了具有垂直 PANI 纳米线形态的电极,可提供最高的电化学性能。使用该电极组装的全固态柔性对称超级电容器可提供 35.9 Wh kg 的非凡能量密度 在 RGO/CF 表面上合成的完全掺杂的 PANI 使用过硫酸铵作为氧化剂,O/M 比为 0.5,形成了具有垂直 PANI 纳米线形态的电极,可提供最高的电化学性能。使用该电极组装的全固态柔性对称超级电容器可提供 35.9 Wh kg 的非凡能量密度-1(在 130.5 W kg -1的功率密度下)并在 1000 次机械弯曲循环后保持 91.5% 的初始比电容。该超级电容器具有良好的倍率性能和出色的循环稳定性(1000 次充放电循环后保持率达 97.3%)。这项研究的结果将为下一代可穿戴超级电容器带来更好的基于聚苯胺的纺织电极设计。
图形概要
"点击查看英文标题和摘要"
Morphology control of polyaniline nanostructures on the surface of reduced graphene oxide/cotton fabric composite electrode for high-performance wearable supercapacitor application
Various morphologies of polyaniline (PANI) nanostructures (i.e., nanospheres, nanofibers, vertical nanowires, and cauliflower-like) were synthesized on the surface of reduced graphene oxide (RGO)/cotton fabric (CF) electrode through in situ chemical polymerization method. The synthesis parameters, such as oxidant/monomer (O/M) molar ratio and oxidant type, were changed to investigate the effect of surface morphology on supercapacitive performance of PANI/RGO/CF electrode. Also, the effect of the de-doping process of doped PANI on the electrochemical performance of the PANI/RGO/CF electrode was evaluated. It was found that the O/M ratio and oxidant type strongly affect the nucleation rate of PANI nanostructures, leading to developing electrodes with different surface morphologies providing different electrical conductivities and energy storage performances. The de-doping process was found as an unfavorable treatment, yielding the decreased conductivity and capacitive performance of the PANI/RGO/CF electrode. The synthesized fully doped PANI on the surface of RGO/CF using ammonium persulfate as the oxidant at an O/M ratio of 0.5 created an electrode with the vertical PANI nanowires morphology providing the highest electrochemical performance. The all-solid-state flexible symmetric supercapacitor assembled using this electrode delivered a remarkable energy density of 35.9 Wh kg−1 (at a power density of 130.5 W kg−1) and retained 91.5% of initial specific capacitance after 1000 mechanical bending cycles. This supercapacitor possessed good rate capability and excellent cycling stability (97.3% retention after 1000 charge–discharge cycles). The findings of this research will lead to a better design of polyaniline-based textile electrodes for the next-generation wearable supercapacitors.
Graphical abstract