当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Chemical Welding of the Electrode–Electrolyte Interface by Zn-Metal-Initiated In Situ Gelation for Ultralong-Life Zn-Ion Batteries
Advanced Materials ( IF 27.4 ) Pub Date : 2022-09-08 , DOI: 10.1002/adma.202207118 Yao Qin 1 , Hongfei Li 1, 2 , Cuiping Han 3 , Funian Mo 4 , Xin Wang 1
Advanced Materials ( IF 27.4 ) Pub Date : 2022-09-08 , DOI: 10.1002/adma.202207118 Yao Qin 1 , Hongfei Li 1, 2 , Cuiping Han 3 , Funian Mo 4 , Xin Wang 1
Affiliation
A compatible and robust electrode–electrolyte interface is favorable in resolving the severe dendritic growth and side reactions of aqueous Zn-ion batteries toward commercial-standard lifespan and charging–discharging rate. Herein, a chemical welding strategy through in situ construction of a gel electrolyte that enables Zn-ion batteries to achieve ultralong life and reversibility is reported. The gel electrolyte is spontaneously formed on the Zn anode surface by redox polymerization with the initiation of Zn metal. The direct participation of the Zn anode in the chemical synthesis of the gel electrolyte brings a well-bonded and water-poor electrode–electrolyte interface, which not only alleviates side reactions but also enables preferential (002) Zn deposition. The in situ symmetric cell thus prepared delivers an ultralong lifespan of 5100 h (>212 days), and a hybrid capacitor with the in situ electrolyte runs smoothly over 40 000 cycles at 20 A g−1. Even at an ultrahigh current density of 40 mA cm−2 and capacity of 40 mAh cm−2, the cell still operates stably for 240 h, alongside a high Zn utilization with 87% depth of discharge. The in situ gel electrolyte integrating robust interface and preparation of all-in-one cells demonstrate a commercializable path for aqueous Zn-storage devices.
中文翻译:
超长寿命锌离子电池用锌金属引发的原位凝胶化学焊接电极-电解质界面
兼容且坚固的电极-电解质界面有利于解决水系锌离子电池的严重枝晶生长和副反应,从而实现商业标准寿命和充放电速率。本文报道了一种通过原位构建凝胶电解质的化学焊接策略,使锌离子电池能够实现超长寿命和可逆性。凝胶电解质是在锌金属引发的氧化还原聚合作用下在锌阳极表面自发形成的。锌负极直接参与凝胶电解质的化学合成,形成了良好的键合和缺水的电极-电解质界面,这不仅减轻了副反应,而且使 (002) 锌的优先沉积成为可能。如此制备的原位对称电池可提供 5100 小时的超长寿命(>-1。即使在 40 mA cm -2的超高电流密度和 40 mAh cm -2的 容量下,电池仍可稳定运行 240 小时,同时具有 87% 的放电深度和高锌利用率。原位凝胶电解质集成了坚固的界面和一体式电池的制备,为水性锌存储装置提供了商业化途径。
更新日期:2022-09-08
中文翻译:
超长寿命锌离子电池用锌金属引发的原位凝胶化学焊接电极-电解质界面
兼容且坚固的电极-电解质界面有利于解决水系锌离子电池的严重枝晶生长和副反应,从而实现商业标准寿命和充放电速率。本文报道了一种通过原位构建凝胶电解质的化学焊接策略,使锌离子电池能够实现超长寿命和可逆性。凝胶电解质是在锌金属引发的氧化还原聚合作用下在锌阳极表面自发形成的。锌负极直接参与凝胶电解质的化学合成,形成了良好的键合和缺水的电极-电解质界面,这不仅减轻了副反应,而且使 (002) 锌的优先沉积成为可能。如此制备的原位对称电池可提供 5100 小时的超长寿命(>-1。即使在 40 mA cm -2的超高电流密度和 40 mAh cm -2的 容量下,电池仍可稳定运行 240 小时,同时具有 87% 的放电深度和高锌利用率。原位凝胶电解质集成了坚固的界面和一体式电池的制备,为水性锌存储装置提供了商业化途径。