当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrathin Zn2(OH)3VO3 Nanosheets: First Synthesis, Excellent Lithium-Storage Properties, and Investigation of Electrochemical Mechanism
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2016-09-01 00:00:00 , DOI: 10.1021/acsami.6b08048
Gongzheng Yang 1 , Mingmei Wu 1 , Chengxin Wang 1
Affiliation  

Nowadays, exploiting novel electrode materials is widely accepted as a key for meeting the growing demands of high-performance lithium ion batteries. Several transition-metal vanadates, which can in situ form an elastic buffer to adapt the volume expansion during lithium uptake/removal, have recently attracted much attention as anode materials, since they have high capacity and superior cycling stability. Herein, Zn2(OH)3VO3 nanostructures are successfully fabricated for the first time by a facile hydrothermal method and also first studied as lithium ion anode material. The ultrathin Zn2(OH)3VO3 nanosheets deliver a high reversible capacity close to 900 mAh g–1 at a current density of 1 A g–1 over 100 cycles. Even at a high current rate of 5 A g–1, capacity retention as high as 83% (by compared with the second discharge capacity) is still obtained after 500 cycles, showing a high-rate capability. Moreover, we also carefully investigated the lithium-storage mechanism of Zn2(OH)3VO3, and corresponding results reveal that the Zn2(OH)3VO3 nanosheets have in situ transformed into ZnO nanoparticles anchoring on lithiated vanadium oxides matrix. The synergistic effect of zinc and vanadium oxides upon lithium ions intercalation and the stable conductive skeleton of amorphous lithiated vanadium oxides matrix both contribute to the excellent battery performance of Zn2(OH)3VO3 nanosheets. Finally, a full cell composed of lithiated Zn2(OH)3VO3/LiFePO4 with a high energy density of 293 Wh kg–1 (vs total mass of active materials) at the current density of 100 mA g–1 was successfully assembled, which could cycle well over 100 cycles with 79% capacity retention and also exhibit good rate stability. Thus, we believe that our research demonstrates a promising anode material for lithium ion batteries.

中文翻译:

Zn 2(OH)3 VO 3超薄纳米片的首次合成,优异的储锂性能和电化学机理的研究

如今,开发新型电极材料已被广泛接受为满足高性能锂离子电池不断增长的需求的关键。几种过渡金属钒酸盐可原位形成弹性缓冲剂,以适应锂吸收/去除过程中的体积膨胀,由于它们具有高容量和优异的循环稳定性,最近作为阳极材料备受关注。这里,Zn 2(OH)3 VO 3纳米结构是通过一种简便的水热方法首次成功制备的,并且首先被研究作为锂离子阳极材料。超薄Zn 2(OH)3 VO 3纳米片可提供接近900 mAh g –1的高可逆容量在100个周期内的电流密度为1 A g –1时。即使在5 A g –1的高电流速率下,经过500次循环后仍可获得高达83%的容量保持率(与第二放电容量相比),显示出高速率容量。此外,我们还仔细研究了Zn 2(OH)3 VO 3的储锂机理,相应的结果表明Zn 2(OH)3 VO 3纳米片原位转化为锚定在锂化钒氧化物基质上的ZnO纳米颗粒。锌和钒氧化物对锂离子插层的协同作用以及非晶态锂化钒氧化物基质的稳定导电骨架均有助于Zn 2(OH)3 VO 3纳米片的出色电池性能。最后,一个充满锂的Zn 2(OH)3 VO 3 / LiFePO 4组成的满电池,在100 mA g –1的电流密度下具有293 Wh kg –1的高能量密度(相对于活性物质的总质量)。组装成功,可以循环100多个周期,保持79%的容量,并且还显示出良好的速率稳定性。因此,我们认为我们的研究证明了锂离子电池的有前景的负极材料。
更新日期:2016-09-01
down
wechat
bug