当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Anchoring Oxidized MXene Nanosheets on Porous Carbon Nanotube Sponge for Enhancing Ion Transport and Pseudocapacitive Performance
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-09-07 , DOI: 10.1021/acsami.2c10659 Rongliang Yang 1 , Qingmei Hu 1 , Shaodian Yang 1 , Zhiping Zeng 2 , Hao Zhang 3 , Anyuan Cao 4 , Xuchun Gui 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-09-07 , DOI: 10.1021/acsami.2c10659 Rongliang Yang 1 , Qingmei Hu 1 , Shaodian Yang 1 , Zhiping Zeng 2 , Hao Zhang 3 , Anyuan Cao 4 , Xuchun Gui 1
Affiliation
Two-dimensional (2D) MXene nanosheets are attractive for electrochemical energy storage applications due to their superior surface-controlled charge storage capacity. However, the slow ion transport in the closely packed electrode limits their electrochemical performances. Meanwhile, the restricted surface-controlled pseudocapacitance of MXene nanosheets requires to be enhanced. Herein, a well-controlled electrophoretic deposition strategy is developed to disperse Ti3C2Tx nanosheets into a freestanding, porous carbon nanotube (CNT) sponge. The constructed Ti3C2Tx@CNT hybrid sponge can provide high-speed ion-transport pathways for the charge–discharge process. Furthermore, by tuning the deposition potential, the inserted MXene nanosheets can be partially oxidized, boosting the pseudocapacitance performance. A large gravimetric capacitance of 468 F g–1 at 10 mV s–1 and a retention of 79.8% at 100 mV s–1 can be achieved in the Ti3C2Tx@CNT electrode. Meanwhile, the highest areal capacitance of 661 mF cm–2 at 1 mA cm–2 was obtained in the sample with high-loading Ti3C2Tx. For the assembled symmetric supercapacitor, 92.8% of the capacitance is retained after 10 000 cycles of the charge–discharge process at 10 mA cm–2. Thus, this study develops a promising electrophoretic deposition strategy for dispersing 2D MXene nanosheets and boosting their pseudocapacitive performance, resulting in a high-capacitive electrochemical energy storage electrode.
中文翻译:
在多孔碳纳米管海绵上锚定氧化的 MXene 纳米片以增强离子传输和赝电容性能
二维 (2D) MXene 纳米片因其优异的表面控制电荷存储能力而对电化学储能应用具有吸引力。然而,密集电极中的慢离子传输限制了它们的电化学性能。同时,需要增强 MXene 纳米片的受限表面控制赝电容。在此,开发了一种控制良好的电泳沉积策略,以将 Ti 3 C 2 T x纳米片分散到独立的多孔碳纳米管 (CNT) 海绵中。构建的 Ti 3 C 2 T x@CNT 混合海绵可为充放电过程提供高速离子传输途径。此外,通过调整沉积电位,插入的 MXene 纳米片可以被部分氧化,从而提高赝电容性能。在 Ti 3 C 2 T x @CNT 电极中,可以在 10 mV s –1 下实现468 F g –1的大重量电容和在 100 mV s –1下 79.8% 的保留率。同时,在高负载 Ti 3 C 2 T x的样品中,在 1 mA cm -2下获得了661 mF cm -2的最高面电容。. 对于组装好的对称超级电容器,在 10 mA cm -2的充放电过程中循环 10 000 次后,92.8% 的电容仍保持不变。因此,本研究开发了一种有前景的电泳沉积策略,用于分散 2D MXene 纳米片并提高其赝电容性能,从而产生高电容电化学储能电极。
更新日期:2022-09-07
中文翻译:
在多孔碳纳米管海绵上锚定氧化的 MXene 纳米片以增强离子传输和赝电容性能
二维 (2D) MXene 纳米片因其优异的表面控制电荷存储能力而对电化学储能应用具有吸引力。然而,密集电极中的慢离子传输限制了它们的电化学性能。同时,需要增强 MXene 纳米片的受限表面控制赝电容。在此,开发了一种控制良好的电泳沉积策略,以将 Ti 3 C 2 T x纳米片分散到独立的多孔碳纳米管 (CNT) 海绵中。构建的 Ti 3 C 2 T x@CNT 混合海绵可为充放电过程提供高速离子传输途径。此外,通过调整沉积电位,插入的 MXene 纳米片可以被部分氧化,从而提高赝电容性能。在 Ti 3 C 2 T x @CNT 电极中,可以在 10 mV s –1 下实现468 F g –1的大重量电容和在 100 mV s –1下 79.8% 的保留率。同时,在高负载 Ti 3 C 2 T x的样品中,在 1 mA cm -2下获得了661 mF cm -2的最高面电容。. 对于组装好的对称超级电容器,在 10 mA cm -2的充放电过程中循环 10 000 次后,92.8% 的电容仍保持不变。因此,本研究开发了一种有前景的电泳沉积策略,用于分散 2D MXene 纳米片并提高其赝电容性能,从而产生高电容电化学储能电极。