Estuarine, Coastal and Shelf Science ( IF 2.6 ) Pub Date : 2022-09-06 , DOI: 10.1016/j.ecss.2022.108060
Yong-Xu Sun , Xiao-Xu Li , Yue Tan , Jie Wang , Yun-Wei Dong
![]() |
The proliferation of coastal infrastructure in the context of coastal development, urbanization, and global change is inevitably related to the transformation of coastal community structure. For restoration of biodiversity in these human-disturbed coastal ecosystems, it is vital to untangle the community structure and thermal environments, with the consideration of the microhabitat-scale thermal environment variations. In the present study, we measured the species richness, α-diversity (i.e. the species composition of each surface of breakwaters), and β-diversity (i.e. the dissimilarities among macrobenthic communities of different surfaces of breakwater) of macrobenthos on the breakwaters on a tropical shore for understanding the variation of the community structure of macrobenthos; we also monitored the operative temperatures in different surfaces of the breakwaters during the experimental period for investigating the roles of microhabitat thermal environment on the community structure of macrobenthos on the artificial infrastructure. Our results showed that there were higher species richness and abundance in the thermally benign microhabitats. The variations of β-diversity indicated that the community structure underwent dramatic changes in different microhabitats and seasons. The population dynamics of thermal-sensitive species (e.g. Patelloida pygmaea, Cellana toreuma, and Siphonaria japonica) largely contributed to the changes in community structure. Redundancy analysis (RDA) results showed that maximum temperature, temperature predictability (i.e. the degree to which a temperature data point in a time series is influenced by its historical values), and heating rate were important thermal characteristics driving community structure on the artificial infrastructure. These results indicate the heterogeneity of thermal environments among different microhabitats is crucial for maintaining the community structure of macrobenthos on the artificial infrastructure and suggest that structural complexity should be considered for biodiversity conservation in the design and construction of coastal infrastructure.
中文翻译:

微生境热环境控制沿海基础设施大型底栖动物群落结构
在沿海开发、城市化和全球变化的背景下,沿海基础设施的激增不可避免地与沿海社区结构的转变有关。为了恢复这些人为干扰的沿海生态系统中的生物多样性,在考虑微生境尺度的热环境变化的情况下,解开群落结构和热环境至关重要。在本研究中,我们测量了防波堤上大型底栖动物的物种丰富度、α-多样性(即每个防波堤表面的物种组成)和β-多样性(即不同防波堤表面的大型底栖动物群落之间的差异)。热带海岸,了解大型底栖动物群落结构的变化;我们还在实验期间监测了防波堤不同表面的工作温度,以研究微生境热环境对大型底栖动物群落结构对人工基础设施的作用。我们的研究结果表明,热良性微生境中的物种丰富度和丰度较高。β-多样性的变化表明群落结构在不同的微生境和季节经历了巨大的变化。热敏物种的种群动态(例如 我们的研究结果表明,热良性微生境中的物种丰富度和丰度较高。β-多样性的变化表明群落结构在不同的微生境和季节经历了巨大的变化。热敏物种的种群动态(例如 我们的研究结果表明,热良性微生境中的物种丰富度和丰度较高。β-多样性的变化表明群落结构在不同的微生境和季节经历了巨大的变化。热敏物种的种群动态(例如Patelloida pygmaea , Cellana toreuma , 和Siphonaria japonica) 很大程度上促成了社区结构的变化。冗余分析(RDA)结果表明,最高温度、温度可预测性(即时间序列中温度数据点受其历史值影响的程度)和升温速率是驱动人工基础设施群落结构的重要热特征。这些结果表明,不同微生境之间热环境的异质性对于维持大型底栖动物在人工基础设施上的群落结构至关重要,并表明在沿海基础设施的设计和建设中应考虑结构复杂性以保护生物多样性。