当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Adsorption Interface-Induced H...F Charge Transfer in Ultramicroporous Metal–Organic Frameworks for Perfluorinated Gas Separation
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2022-08-31 , DOI: 10.1021/acs.iecr.2c01604 Yue Wu 1 , Tong Yan 1 , Wenxiang Zhang 1 , Shuhui Chen 1 , Yu Fu 1 , Zhonghui Zhang 1 , Heping Ma 1
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2022-08-31 , DOI: 10.1021/acs.iecr.2c01604 Yue Wu 1 , Tong Yan 1 , Wenxiang Zhang 1 , Shuhui Chen 1 , Yu Fu 1 , Zhonghui Zhang 1 , Heping Ma 1
Affiliation
Fluorinated electron gases (F-gases) are widely used in semiconductor manufacturing because of their unique plasma reactivity with silicon-based semiconductor materials. However, the low conversion efficiency of these F-gases in the plasma process makes the vent gases contain a certain concentration of F-gases, which causes environmental pollution and global warming. In this study, three ultramicroporous metal–organic frameworks M3(HCOO)6 (M = Co, Ni, Mn) were prepared for the separation and purification of F-gases through H...F interaction-induced charge transfer on the pore surface. Impressive F-gas adsorption capacities and record breakthrough selectivities for NF3/N2, CF4/N2, and SF6/N2 mixtures were achieved in M3(HCOO)6 MOFs. Density-functional theory (DFT) calculations and grand canonical Monte Carlo (GCMC) simulation studies demonstrated that the adsorption-induced charge exchange between the F atom in F-gases and the H atom in HCOO– accounts for the high performance of F-gases/N2 separation. Systematic experimental investigations including equilibrium gas adsorption, instant adsorption rates, and dynamic breakthrough experiments also confirmed the efficient performance of M3(HCOO)6 MOFs for F-gas capture.
中文翻译:
超微孔金属-有机框架中吸附界面诱导的 H...F 电荷转移用于全氟气体分离
氟化电子气 (F-gases) 因其与硅基半导体材料的独特等离子体反应性而广泛用于半导体制造。然而,这些F-gas在等离子工艺中的低转化效率使得排出的气体中含有一定浓度的F-gas,从而造成环境污染和全球变暖。在这项研究中,制备了三种超微孔金属有机骨架 M 3 (HCOO) 6 (M = Co, Ni, Mn),通过 H...F 相互作用诱导的孔上电荷转移来分离和纯化 F-气体表面。对 NF 3 /N 2、CF 4 /N 2具有令人印象深刻的 F 气体吸附能力和创纪录的突破选择性, 和 SF 6 /N 2混合物是在 M 3 (HCOO) 6 MOFs中实现的。密度泛函理论 (DFT) 计算和大规范蒙特卡洛 (GCMC) 模拟研究表明,F 气体中的 F 原子与 HCOO 中的 H 原子之间的吸附诱导电荷交换——解释了 F 气体的高性能/N 2分离。包括平衡气体吸附、瞬时吸附速率和动态突破实验在内的系统实验研究也证实了 M 3 (HCOO) 6 MOFs 对 F 气体捕获的有效性能。
更新日期:2022-08-31
中文翻译:
超微孔金属-有机框架中吸附界面诱导的 H...F 电荷转移用于全氟气体分离
氟化电子气 (F-gases) 因其与硅基半导体材料的独特等离子体反应性而广泛用于半导体制造。然而,这些F-gas在等离子工艺中的低转化效率使得排出的气体中含有一定浓度的F-gas,从而造成环境污染和全球变暖。在这项研究中,制备了三种超微孔金属有机骨架 M 3 (HCOO) 6 (M = Co, Ni, Mn),通过 H...F 相互作用诱导的孔上电荷转移来分离和纯化 F-气体表面。对 NF 3 /N 2、CF 4 /N 2具有令人印象深刻的 F 气体吸附能力和创纪录的突破选择性, 和 SF 6 /N 2混合物是在 M 3 (HCOO) 6 MOFs中实现的。密度泛函理论 (DFT) 计算和大规范蒙特卡洛 (GCMC) 模拟研究表明,F 气体中的 F 原子与 HCOO 中的 H 原子之间的吸附诱导电荷交换——解释了 F 气体的高性能/N 2分离。包括平衡气体吸附、瞬时吸附速率和动态突破实验在内的系统实验研究也证实了 M 3 (HCOO) 6 MOFs 对 F 气体捕获的有效性能。