Nature Communications ( IF 14.7 ) Pub Date : 2022-08-29 , DOI: 10.1038/s41467-022-32721-2 Seok Daniel Namgung 1, 2 , Ryeong Myeong Kim 1 , Yae-Chan Lim 1 , Jong Woo Lee 1 , Nam Heon Cho 1 , Hyeohn Kim 1 , Jin-Suk Huh 1, 2 , Hanju Rhee 3 , Sanghee Nah 3 , Min-Kyu Song 4 , Jang-Yeon Kwon 4 , Ki Tae Nam 1, 2
The quantitative detection of circularly polarized light (CPL) is necessary in next-generation optical communication carrying high-density information and in phase-controlled displays exhibiting volumetric imaging. In the current technology, multiple pixels of different wavelengths and polarizers are required, inevitably resulting in high loss and low detection efficiency. Here, we demonstrate a highly efficient CPL-detecting transistor composed of chiral plasmonic nanoparticles with a high Khun’s dissymmetry (g-factor) of 0.2 and a high mobility conducting oxide of InGaZnO. The device successfully distinguished the circular polarization state and displayed an unprecedented photoresponsivity of over 1 A/W under visible CPL excitation. This observation is mainly attributed to the hot electron generation in chiral plasmonic nanoparticles and to the effective collection of hot electrons in the oxide semiconducting transistor. Such characteristics further contribute to opto-neuromorphic operation and the artificial nervous system based on the device successfully performs image classification work. We anticipate that our strategy will aid in the rational design and fabrication of a high-performance CPL detector and opto-neuromorphic operation with a chiral plasmonic structure depending on the wavelength and circular polarization state.
中文翻译:
具有手性等离子体纳米粒子的圆偏振光敏热电子晶体管
圆偏振光 (CPL) 的定量检测在承载高密度信息的下一代光通信和显示体积成像的相位控制显示器中是必要的。在当前技术中,需要多个不同波长的像素和偏振片,不可避免地导致高损耗和低检测效率。在这里,我们展示了一种高效的 CPL 检测晶体管,该晶体管由具有 0.2 的高 Khun 不对称性(g 因子)和 InGaZnO 的高迁移率导电氧化物的手性等离子体纳米粒子组成。该装置成功区分了圆偏振态,并在可见光 CPL 激发下显示出前所未有的超过 1 A/W 的光响应性。这一观察结果主要归因于手性等离子体纳米粒子中的热电子产生和氧化物半导体晶体管中热电子的有效收集。这些特性进一步促进了光神经形态操作和基于该设备的人工神经系统成功执行图像分类工作。我们预计,我们的策略将有助于高性能 CPL 探测器的合理设计和制造,以及具有取决于波长和圆偏振态的手性等离子体结构的光神经形态操作。