Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Arrayed Heterostructures of MoS2 Nanosheets Anchored TiN Nanowires as Efficient Pseudocapacitive Anodes for Fiber-Shaped Ammonium-Ion Asymmetric Supercapacitors
ACS Nano ( IF 15.8 ) Pub Date : 2022-08-29 , DOI: 10.1021/acsnano.2c05905
Lijie Han 1 , Jie Luo 2 , Rongkang Zhang 3 , Wenbin Gong 3 , Long Chen 2 , Fan Liu 2 , Ying Ling 2 , Yihao Dong 2 , Zhenzhong Yong 2, 4 , Yongyi Zhang 2, 4 , Lei Wei 5 , Xiaogang Zhang 1 , Qichong Zhang 2, 4 , Qingwen Li 2
ACS Nano ( IF 15.8 ) Pub Date : 2022-08-29 , DOI: 10.1021/acsnano.2c05905
Lijie Han 1 , Jie Luo 2 , Rongkang Zhang 3 , Wenbin Gong 3 , Long Chen 2 , Fan Liu 2 , Ying Ling 2 , Yihao Dong 2 , Zhenzhong Yong 2, 4 , Yongyi Zhang 2, 4 , Lei Wei 5 , Xiaogang Zhang 1 , Qichong Zhang 2, 4 , Qingwen Li 2
Affiliation
![]() |
Nonmetallic ammonium ions that feature high safety, low molar mass, and small hydrated radius properties have shown great advantages in wearable aqueous supercapacitors. The construction of high-energy-density flexible ammonium-ion asymmetric supercapacitors (AASCs) is promising but still challenging due to the lack of high-capacitance pseudocapacitive anodes. Herein, freestanding core–shell heterostructures supported on carbon nanotube fibers were designed by anchoring MoS2 nanosheets on nanowires (MoS2@TiN/CNTF) as anodes for AASCs. With contributions of abundant active sites and conspicuous synergistic effects of multiple components for arrayed heterostructure engineering, the developed MoS2@TiN/CNTF anodes exhibit a specific capacitance of 1102.5 mF cm–2 at 2 mA cm–2. Theoretical calculations confirm the dramatic enhancement of the binding strength of ammonium ions on the MoS2 shell layer at the heterostructure, where a built-in electric field exists to accelerate the charge transfer. By utilizing a MnO2/CNTF cathode and NH4Cl/poly(vinyl alcohol) (PVA) as a gel electrolyte, quasi-solid-state fiber-shaped AASCs were successfully constructed, achieving a specific capacitance of 351.2 mF cm–2 and an energy density of 195.1 μWh cm–2, outperforming most recently reported fiber-shaped supercapacitors. This work provides a promising strategy to rationally design heterostructure engineering of MoS2@TiN nanoarrays toward advanced anodes for application in next-generation AASCs.
中文翻译:
MoS2纳米片的阵列异质结构锚定TiN纳米线作为纤维状铵离子不对称超级电容器的高效赝电容阳极
具有高安全性、低摩尔质量和小水合半径特性的非金属铵离子在可穿戴水性超级电容器中显示出巨大优势。高能量密度柔性铵离子不对称超级电容器(AASCs)的构建是有希望的,但由于缺乏高电容赝电容阳极,仍然具有挑战性。在此,通过将 MoS 2纳米片锚定在纳米线上(MoS 2 @TiN/CNTF)作为 AASC 的阳极,设计了支撑在碳纳米管纤维上的独立核壳异质结构。凭借丰富的活性位点和多组分对阵列异质结构工程的显着协同效应,开发的 MoS 2 @TiN/CNTF 阳极表现出 1102.5 mF cm 的比电容–2在 2 mA cm –2。理论计算证实了铵离子在异质结构的 MoS 2壳层上的结合强度显着增强,其中存在内置电场以加速电荷转移。利用 MnO 2 /CNTF 正极和 NH 4 Cl/聚乙烯醇 (PVA) 作为凝胶电解质,成功构建了准固态纤维状 AASC,比电容为 351.2 mF cm -2和能量密度为 195.1 μWh cm –2,优于最近报道的纤维形超级电容器。这项工作为合理设计 MoS 2的异质结构工程提供了一种有前景的策略@TiN 纳米阵列朝着先进的阳极发展,用于下一代 AASC。
更新日期:2022-08-29
中文翻译:

MoS2纳米片的阵列异质结构锚定TiN纳米线作为纤维状铵离子不对称超级电容器的高效赝电容阳极
具有高安全性、低摩尔质量和小水合半径特性的非金属铵离子在可穿戴水性超级电容器中显示出巨大优势。高能量密度柔性铵离子不对称超级电容器(AASCs)的构建是有希望的,但由于缺乏高电容赝电容阳极,仍然具有挑战性。在此,通过将 MoS 2纳米片锚定在纳米线上(MoS 2 @TiN/CNTF)作为 AASC 的阳极,设计了支撑在碳纳米管纤维上的独立核壳异质结构。凭借丰富的活性位点和多组分对阵列异质结构工程的显着协同效应,开发的 MoS 2 @TiN/CNTF 阳极表现出 1102.5 mF cm 的比电容–2在 2 mA cm –2。理论计算证实了铵离子在异质结构的 MoS 2壳层上的结合强度显着增强,其中存在内置电场以加速电荷转移。利用 MnO 2 /CNTF 正极和 NH 4 Cl/聚乙烯醇 (PVA) 作为凝胶电解质,成功构建了准固态纤维状 AASC,比电容为 351.2 mF cm -2和能量密度为 195.1 μWh cm –2,优于最近报道的纤维形超级电容器。这项工作为合理设计 MoS 2的异质结构工程提供了一种有前景的策略@TiN 纳米阵列朝着先进的阳极发展,用于下一代 AASC。