当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Powder Metallurgy Route to Ultrafine-Grained Refractory Metals
Advanced Materials ( IF 27.4 ) Pub Date : 2022-08-29 , DOI: 10.1002/adma.202205807 Lin Zhang 1 , Xingyu Li 1 , Xuanhui Qu 1 , Mingli Qin 1 , Zhongyou Que 1 , Zichen Wei 1 , Chenguang Guo 1 , Xin Lu 1 , Yanhao Dong 2
Advanced Materials ( IF 27.4 ) Pub Date : 2022-08-29 , DOI: 10.1002/adma.202205807 Lin Zhang 1 , Xingyu Li 1 , Xuanhui Qu 1 , Mingli Qin 1 , Zhongyou Que 1 , Zichen Wei 1 , Chenguang Guo 1 , Xin Lu 1 , Yanhao Dong 2
Affiliation
Ultrafine-grained (UFG) refractory metals are promising materials for applications in aerospace, microelectronics, nuclear energy, and many others under extreme environments. Powder metallurgy (PM) allows to produce such materials with well-controlled chemistry and microstructure at multiple length scales and near-net shape manufacturing. However, sintering refractory metals to full density while maintaining a fine microstructure is still challenging due to the high sintering temperature and the difficulty to separate the kinetics of densification versus grain growth. Here an overview of the sintering issues, microstructural design rules, and PM practices towards UFG and nanocrystalline refractory metals are sought to be provided. The previous efforts shall be reviewed to address the processing challenges, including the use of fine/nanopowders, second-phase grain growth inhibitors, and field-assisted sintering techniques. Recently, pressureless two-step sintering has been successfully demonstrated in producing dense UFG refractory metals down to ≈300 nm average grain size with a uniform microstructure and this technological breakthrough shall be reviewed. PM progresses in specific materials systems shall be next reviewed, including elementary metals (W and Mo), refractory alloys (W-Re), refractory high-entropy alloys, and their composites. Last, future developments and the endeavor towards UFG and nanocrystalline refractory metals with exceptionally uniform microstructure and improved properties are outlined.
中文翻译:
超细晶难熔金属的粉末冶金路线
超细晶粒(UFG)难熔金属是在航空航天、微电子、核能和许多其他极端环境下应用的有前景的材料。粉末冶金 (PM) 可以在多个长度尺度和近净形状制造中生产具有良好控制的化学和微观结构的材料。然而,由于烧结温度高且难以分离致密化与晶粒生长的动力学,因此将难熔金属烧结至全密度同时保持精细的微观结构仍然具有挑战性。本文概述了 UFG 和纳米晶难熔金属的烧结问题、微观结构设计规则和粉末冶金实践。应回顾之前的努力以解决加工挑战,包括使用细/纳米粉末、第二相晶粒生长抑制剂和现场辅助烧结技术。最近,无压两步烧结已成功证明可以生产平均晶粒尺寸小至约 300 nm、具有均匀微观结构的致密 UFG 难熔金属,这一技术突破值得回顾。接下来将回顾特定材料系统中的粉末冶金进展,包括元素金属(W和Mo)、难熔合金(W-Re)、难熔高熵合金及其复合材料。最后,概述了具有极其均匀的微观结构和改进性能的 UFG 和纳米晶难熔金属的未来发展和努力。
更新日期:2022-08-29
中文翻译:
超细晶难熔金属的粉末冶金路线
超细晶粒(UFG)难熔金属是在航空航天、微电子、核能和许多其他极端环境下应用的有前景的材料。粉末冶金 (PM) 可以在多个长度尺度和近净形状制造中生产具有良好控制的化学和微观结构的材料。然而,由于烧结温度高且难以分离致密化与晶粒生长的动力学,因此将难熔金属烧结至全密度同时保持精细的微观结构仍然具有挑战性。本文概述了 UFG 和纳米晶难熔金属的烧结问题、微观结构设计规则和粉末冶金实践。应回顾之前的努力以解决加工挑战,包括使用细/纳米粉末、第二相晶粒生长抑制剂和现场辅助烧结技术。最近,无压两步烧结已成功证明可以生产平均晶粒尺寸小至约 300 nm、具有均匀微观结构的致密 UFG 难熔金属,这一技术突破值得回顾。接下来将回顾特定材料系统中的粉末冶金进展,包括元素金属(W和Mo)、难熔合金(W-Re)、难熔高熵合金及其复合材料。最后,概述了具有极其均匀的微观结构和改进性能的 UFG 和纳米晶难熔金属的未来发展和努力。