巨噬细胞在经典的促炎极化(M1 样)过程中经历广泛的代谢重编程。衣康酸盐的积累已被认为是炎症反应的结果和介质。在这项研究中,我们首先检查了分离线粒体中衣康酸盐的具体功能。我们表明 M1 巨噬细胞通过线粒体内的顺乌头酸脱羧酶 1 (ACOD1) 从头产生衣康酸。该反应的碳不仅由氧化 TCA 循环提供,而且还通过异柠檬酸脱氢酶 (IDH) 对 α-酮戊二酸的还原羧化提供。虽然巨噬细胞能够通过增强 IDH 依赖性还原羧化的活性,在缺氧期间维持一定程度的衣康酸生产,我们证明足够的衣康酸合成需要小鼠巨噬细胞中还原性和氧化性 TCA 循环代谢的平衡。相比之下,人类巨噬细胞通过增强还原羧化活性来增加低氧条件下衣康酸的积累。我们进一步证明,衣康酸可减弱 IDH2 的还原性羧化作用,从而限制其自身的产生以及免疫调节代谢物柠檬酸和 2-羟基戊二酸的积累。与此一致,在 ACOD1 耗尽的巨噬细胞中还原羧化作用增强。从机制上讲,衣康酸盐对 IDH2 的抑制与线粒体 NADP 的改变有关 人类巨噬细胞通过增强还原羧化活性来增加低氧条件下衣康酸的积累。我们进一步证明,衣康酸可减弱 IDH2 的还原性羧化作用,从而限制其自身的产生以及免疫调节代谢物柠檬酸和 2-羟基戊二酸的积累。与此一致,在 ACOD1 耗尽的巨噬细胞中还原羧化作用增强。从机制上讲,衣康酸盐对 IDH2 的抑制与线粒体 NADP 的改变有关 人类巨噬细胞通过增强还原羧化活性来增加低氧条件下衣康酸的积累。我们进一步证明,衣康酸可减弱 IDH2 的还原性羧化作用,从而限制其自身的产生以及免疫调节代谢物柠檬酸和 2-羟基戊二酸的积累。与此一致,在 ACOD1 耗尽的巨噬细胞中还原羧化作用增强。从机制上讲,衣康酸盐对 IDH2 的抑制与线粒体 NADP 的改变有关+ /NADPH 比率和竞争性琥珀酸脱氢酶抑制。综上所述,我们的研究结果扩展了促炎巨噬细胞激活期间 TCA 循环重编程的当前模型,并确定了衣康酸盐的新调节特性。
"点击查看英文标题和摘要"
Itaconate controls its own synthesis via feedback-inhibition of reverse TCA cycle activity at IDH2
Macrophages undergo extensive metabolic reprogramming during classical pro-inflammatory polarization (M1-like). The accumulation of itaconate has been recognized as both a consequence and mediator of the inflammatory response. In this study we first examined the specific functions of itaconate inside fractionated mitochondria. We show that M1 macrophages produce itaconate de novo via aconitase decarboxylase 1 (ACOD1) inside mitochondria. The carbon for this reaction is not only supplied by oxidative TCA cycling, but also through the reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase (IDH). While macrophages are capable of sustaining a certain degree of itaconate production during hypoxia by augmenting the activity of IDH-dependent reductive carboxylation, we demonstrate that sufficient itaconate synthesis requires a balance of reductive and oxidative TCA cycle metabolism in mouse macrophages. In comparison, human macrophages increase itaconate accumulation under hypoxic conditions by augmenting reductive carboxylation activity. We further demonstrated that itaconate attenuates reductive carboxylation at IDH2, restricting its own production and the accumulation of the immunomodulatory metabolites citrate and 2-hydroxyglutarate. In line with this, reductive carboxylation is enhanced in ACOD1-depleted macrophages. Mechanistically, the inhibition of IDH2 by itaconate is linked to the alteration of the mitochondrial NADP+/NADPH ratio and competitive succinate dehydrogenase inhibition. Taken together, our findings extend the current model of TCA cycle reprogramming during pro-inflammatory macrophage activation and identified novel regulatory properties of itaconate.