当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Onset Potential Shift of Water Oxidation in the Metastable Phase Transformation Process of β-Fe2O3
Energy & Fuels ( IF 5.2 ) Pub Date : 2022-08-24 , DOI: 10.1021/acs.energyfuels.2c01812 Ningsi Zhang 1 , Yongsheng Guo 1 , Huiting Huang 1 , Shicheng Yan 1 , Zhaosheng Li 1, 2 , Zhigang Zou 1, 2
Energy & Fuels ( IF 5.2 ) Pub Date : 2022-08-24 , DOI: 10.1021/acs.energyfuels.2c01812 Ningsi Zhang 1 , Yongsheng Guo 1 , Huiting Huang 1 , Shicheng Yan 1 , Zhaosheng Li 1, 2 , Zhigang Zou 1, 2
Affiliation
Metastable iron oxide (β-Fe2O3) has attracted wide attention in photoelectrochemical water splitting as a result of its ideal light absorption capacity and theoretical saturation photocurrent. However, the poor crystallinity and high concentration of defects of β-Fe2O3 prepared by the traditional method resulted in a high onset potential in photoelectrochemical water splitting. This work proved that γ-Fe2O3 can be converted into β-Fe2O3 under heating, which exploits a new synthetic route for β-Fe2O3. β-Fe2O3 obtained by this phase transformation method has a smaller particle size and better crystallinity, resulting in a significant reduction in defects. The β-Fe2O3 photoanode exhibits an onset potential below 0.8 VRHE, which is the lowest data thus far. This discovery breaks through the limited synthesis methods of β-Fe2O3, thereby reducing the obstacles of preparing β-Fe2O3 photoelectrodes.
中文翻译:
β-Fe2O3亚稳态相变过程中水氧化的起始电位位移
亚稳态氧化铁(β-Fe 2 O 3)由于其理想的光吸收能力和理论饱和光电流在光电化学水分解中引起了广泛关注。然而,传统方法制备的β-Fe 2 O 3结晶度差,缺陷浓度高,导致光电化学水分解的起始电位较高。这项工作证明了γ-Fe 2 O 3在加热下可以转化为β-Fe 2 O 3 ,为β-Fe 2 O 3的合成开辟了一条新途径。β-Fe 2 O 3通过这种相变方法获得的颗粒尺寸更小,结晶度更好,从而显着减少了缺陷。β-Fe 2 O 3光阳极的起始电位低于 0.8 V RHE,这是迄今为止的最低数据。这一发现突破了β-Fe 2 O 3有限的合成方法,从而减少了制备β-Fe 2 O 3光电极的障碍。
更新日期:2022-08-24
中文翻译:
β-Fe2O3亚稳态相变过程中水氧化的起始电位位移
亚稳态氧化铁(β-Fe 2 O 3)由于其理想的光吸收能力和理论饱和光电流在光电化学水分解中引起了广泛关注。然而,传统方法制备的β-Fe 2 O 3结晶度差,缺陷浓度高,导致光电化学水分解的起始电位较高。这项工作证明了γ-Fe 2 O 3在加热下可以转化为β-Fe 2 O 3 ,为β-Fe 2 O 3的合成开辟了一条新途径。β-Fe 2 O 3通过这种相变方法获得的颗粒尺寸更小,结晶度更好,从而显着减少了缺陷。β-Fe 2 O 3光阳极的起始电位低于 0.8 V RHE,这是迄今为止的最低数据。这一发现突破了β-Fe 2 O 3有限的合成方法,从而减少了制备β-Fe 2 O 3光电极的障碍。