当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Negative Differential Resistance in Oxygen-ion Conductor Yttria-stabilized Zirconia for Extreme Environment Electronics
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-08-23 , DOI: 10.1021/acsami.2c09944 Yifan Yuan 1 , Haoming Yu 1 , Adrian Podpirka 2 , Paul Ostdiek 2 , Rengaswamy Srinivasan 2 , Shriram Ramanathan 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-08-23 , DOI: 10.1021/acsami.2c09944 Yifan Yuan 1 , Haoming Yu 1 , Adrian Podpirka 2 , Paul Ostdiek 2 , Rengaswamy Srinivasan 2 , Shriram Ramanathan 1
Affiliation
Oxygen-ion conductors have traditionally been studied in the context of high temperature (≈ 873 to 1773 K) energy conversion and sensor technologies. However, there is growing interest in exploring ion-based electronics for harsh environments (400 to 573 K) that represents an emerging field. Here, we utilize a blocking electrode to modify the interface properties of oxygen-ion conducting yttria-stabilized zirconia (YSZ) thin film electrochemical cells. The modified YSZ cell exhibits negative differential resistance (NDR) in the current–voltage curves at 543 K in the air. A double-sweep method and analysis of the scan-rate dependence of the j–V characteristics clearly suggest that the NDR behavior is formed by the reduction reaction of adsorbed oxygen or platinum oxide at the YSZ/Pt interface. A stable and switchable YSZ NDR device is realized with a high peak-to-valley current ratio of 5.8 at 543 K. Utilizing the NDR effect, we demonstrate a proof-of-concept switchable ternary inverter by interfacing with a silicon transistor. Oxygen-ion conductors and their interfaces offer new directions to design electronics for extreme environments.
中文翻译:
用于极端环境电子设备的氧离子导体氧化钇稳定氧化锆中的负微分电阻
传统上,氧离子导体在高温(≈ 873 至 1773 K)能量转换和传感器技术的背景下进行了研究。然而,对于代表新兴领域的恶劣环境(400 至 573 K)探索基于离子的电子设备的兴趣与日俱增。在这里,我们利用阻挡电极来改变氧离子导电氧化钇稳定氧化锆 (YSZ) 薄膜电化学电池的界面特性。改进后的 YSZ 电池在 543 K 空气中的电流-电压曲线中表现出负微分电阻 (NDR)。j - V的扫描速率依赖性的双扫描方法和分析特征清楚地表明,NDR 行为是由 YSZ/Pt 界面处吸附的氧或氧化铂的还原反应形成的。稳定且可切换的 YSZ NDR 器件在 543 K 时具有 5.8 的高峰谷电流比。利用 NDR 效应,我们通过与硅晶体管接口展示了概念验证的可切换三元逆变器。氧离子导体及其接口为极端环境下的电子设计提供了新的方向。
更新日期:2022-08-23
中文翻译:
用于极端环境电子设备的氧离子导体氧化钇稳定氧化锆中的负微分电阻
传统上,氧离子导体在高温(≈ 873 至 1773 K)能量转换和传感器技术的背景下进行了研究。然而,对于代表新兴领域的恶劣环境(400 至 573 K)探索基于离子的电子设备的兴趣与日俱增。在这里,我们利用阻挡电极来改变氧离子导电氧化钇稳定氧化锆 (YSZ) 薄膜电化学电池的界面特性。改进后的 YSZ 电池在 543 K 空气中的电流-电压曲线中表现出负微分电阻 (NDR)。j - V的扫描速率依赖性的双扫描方法和分析特征清楚地表明,NDR 行为是由 YSZ/Pt 界面处吸附的氧或氧化铂的还原反应形成的。稳定且可切换的 YSZ NDR 器件在 543 K 时具有 5.8 的高峰谷电流比。利用 NDR 效应,我们通过与硅晶体管接口展示了概念验证的可切换三元逆变器。氧离子导体及其接口为极端环境下的电子设计提供了新的方向。