Nature Communications ( IF 14.7 ) Pub Date : 2022-08-22 , DOI: 10.1038/s41467-022-31604-w Martin Claassen 1 , Lede Xian 2, 3 , Dante M Kennes 3, 4 , Angel Rubio 3, 5
We predict that twisted bilayers of 1T-ZrS2 realize a novel and tunable platform to engineer two-dimensional topological quantum phases dominated by strong spin-orbit interactions. At small twist angles, ZrS2 heterostructures give rise to an emergent and twist-controlled moiré Kagome lattice, combining geometric frustration and strong spin-orbit coupling to give rise to a moiré quantum spin Hall insulator with highly controllable and nearly-dispersionless bands. We devise a generic pseudo-spin theory for group-IV transition metal dichalcogenides that relies on the two-component character of the valence band maximum of the 1T structure at Γ, and study the emergence of a robust quantum anomalous Hall phase as well as possible fractional Chern insulating states from strong Coulomb repulsion at fractional fillings of the topological moiré Kagome bands. Our results establish group-IV transition metal dichalcogenide bilayers as a novel moiré platform to realize strongly-correlated topological phases in a twist-tunable setting.
中文翻译:
扭曲 ZrS2 双层中的超强自旋轨道耦合和拓扑莫尔工程
我们预测,1T-ZrS 2的扭曲双层可实现一种新颖且可调谐的平台,以设计由强自旋轨道相互作用主导的二维拓扑量子相。在小扭转角下,ZrS 2异质结构产生了一种新兴的、扭转控制的莫尔戈梅晶格,结合了几何挫败和强自旋轨道耦合,产生了具有高度可控和几乎无色散带的莫尔量子自旋霍尔绝缘体。我们设计了一种适用于 IV 族过渡金属二硫属化物的通用赝自旋理论,该理论依赖于 1T 结构在 Γ 处的价带最大值的双组分特征,并研究了鲁棒量子反常霍尔相的出现以及可能的情况在拓扑莫尔戈美带的分数填充处,分数陈绝缘态免受强库仑排斥。我们的结果将 IV 族过渡金属二硫属化物双层作为一种新颖的莫尔条纹平台,以在扭曲可调的设置中实现强相关的拓扑相。