知识图嵌入中的链接预测是一个有意义的研究课题。知识图嵌入(KGE)专注于基于三元组预测缺失链接的问题。神经网络一直是知识图谱任务的选择范式。然而,一般的网络 KGE 模型缺乏对实体和关系之间的空间位置联系的关注,并且存在无法捕获全局信息的弱点。我们发现多视图特征构建可以获得更多与实体和关系对应的特征信息。多种类型的多视图空间变换信息的聚合是一个关键问题。因此,我们提出了一种称为多视图特征增强神经网络(MFAE)的知识图嵌入方法,它涉及三个组件:多视图空间变换,特征融合卷积和特征信息增强。为了精确地增强向量空间变换的融合,引入了具有注意力信息计算的特征增强卷积网络作为三重预测。多视图空间变换与特征增强卷积网络相结合,捕获全局特征信息,获得实体和关系信息的多个视图,提高了KGE的有效性。我们在 FB15k-237 和 WN18RR 等基准数据集上对链路预测、不同视图的效果和特征增强神经网络比较进行了广泛的实验。实验表明,与经典链接预测方法相比,MFAE 提供了显着的性能。为了精确地增强向量空间变换的融合,引入了具有注意力信息计算的特征增强卷积网络作为三重预测。多视图空间变换与特征增强卷积网络相结合,捕获全局特征信息,获得实体和关系信息的多个视图,提高了KGE的有效性。我们在 FB15k-237 和 WN18RR 等基准数据集上对链路预测、不同视图的效果和特征增强神经网络比较进行了广泛的实验。实验表明,与经典链接预测方法相比,MFAE 提供了显着的性能。为了精确地增强向量空间变换的融合,引入了具有注意力信息计算的特征增强卷积网络作为三重预测。多视图空间变换与特征增强卷积网络相结合,捕获全局特征信息,获得实体和关系信息的多个视图,提高了KGE的有效性。我们在 FB15k-237 和 WN18RR 等基准数据集上对链路预测、不同视图的效果和特征增强神经网络比较进行了广泛的实验。实验表明,与经典链接预测方法相比,MFAE 提供了显着的性能。多视图空间变换与特征增强卷积网络相结合,捕获全局特征信息,获得实体和关系信息的多个视图,提高了KGE的有效性。我们在 FB15k-237 和 WN18RR 等基准数据集上对链路预测、不同视图的效果和特征增强神经网络比较进行了广泛的实验。实验表明,与经典链接预测方法相比,MFAE 提供了显着的性能。多视图空间变换与特征增强卷积网络相结合,捕获全局特征信息,获得实体和关系信息的多个视图,提高了KGE的有效性。我们在 FB15k-237 和 WN18RR 等基准数据集上对链路预测、不同视图的效果和特征增强神经网络比较进行了广泛的实验。实验表明,与经典链接预测方法相比,MFAE 提供了显着的性能。不同视图和特征增强神经网络比较对 FB15k-237 和 WN18RR 等基准数据集的影响。实验表明,与经典链接预测方法相比,MFAE 提供了显着的性能。不同视图和特征增强神经网络比较对 FB15k-237 和 WN18RR 等基准数据集的影响。实验表明,与经典链接预测方法相比,MFAE 提供了显着的性能。
"点击查看英文标题和摘要"
Multiview feature augmented neural network for knowledge graph embedding
Link prediction in knowledge graph embedding is a meaningful research topic. Knowledge graph embedding (KGE) focuses on the problem of predicting missing links based on triples. Neural networks have been the paradigm of choice in knowledge graph tasks. However, the general network KGE models lack attention to the spatial location connection between entities and relations and have a weakness in that they cannot capture global information. We found that multiview feature construction can obtain more feature information corresponding to entities and relations. Aggregation of multiple types of multiview spatial transform information is a critical issue. Therefore, we propose a knowledge graph embedding method called the multiview feature augmented neural network (MFAE), which involves three components: multiview spatial transform, feature fusion convolution and feature information augmentation. To precisely augment the fusion of the vector spatial transform, a feature augmented convolutional network with attentive information calculation is introduced as a triple prediction. The multiview spatial transform is combined with a feature augmented convolutional network, which captures global feature information, obtains multiple views of entity and relation information, and improves the effectiveness of KGE. We conduct extensive experiments on link prediction, the effect of different views and feature augmented neural network comparison on benchmark datasets such as FB15k-237 and WN18RR. Experiments show that MFAE delivers significant performance compared to the classical link prediction methods.