当前位置: X-MOL 学术ACS Appl. Nano Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale Characteristics of a Room-Temperature Coexisting Phase of Magnetic Skyrmions and Antiskyrmions for Skyrmion–Antiskyrmion-Based Spintronic Applications
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2022-08-18 , DOI: 10.1021/acsanm.2c03162
Daigo Shimizu 1 , Tomoki Nagase 1 , Yeong-Gi So 2 , Makoto Kuwahara 3 , Nobuyuki Ikarashi 1, 4 , Masahiro Nagao 1, 4
Affiliation  

Theoretical studies have predicted that interactions between magnetic skyrmions and antiskyrmions give rise to various properties, such as unique arrangements, pair annihilation, topological transformation, and rectilinear and trochoidal motions that do not appear in only skyrmions or antiskyrmions. Recently, experimental studies have discovered that a Heusler material with the anisotropic Dzyaloshinskii–Moriya interaction shows a coexisting phase at 268 K and in-plane magnetic field-induced topological transformation of elliptical skyrmions and square-shaped antiskyrmions. Therefore, experimentally observing the coexisting phase and the topological transformation could be promising for developing skyrmion–antiskyrmion-based spintronics. However, such interactions and the detailed transformation mechanism remain unrevealed and unclear, respectively. Using Lorentz transmission electron microscopy experiments and micromagnetic simulations, we comprehensively study the properties in a coexisting phase of skyrmions and antiskyrmions in a Heusler material, Mn1.3Pt1.0Pd0.1Sn. Control of dipolar interaction (the sample thickness) allows us to realize a room-temperature coexisting phase. We find that the topological transformation occurs stochastically rather than deterministically, which can be explained by considering the magnetic point group and the direction of an in-plane magnetic field. We further observe isotropic long-range repulsive interaction between skyrmions and antiskyrmions in contrast to the conventional thought of the relative-position- and helicity-dependent short-range pairwise interactions, and deformation of skyrmions and antiskyrmions depending on the distance between them. Our simulations show that the deformation exerts significant influence on the magnetic energies and the energy landscape, contributing to the interaction. Our results provide insight into coexisting phases of skyrmions and antiskyrmions and a guide for developing skyrmion–antiskyrmion-based spintronics.

中文翻译:

用于基于 Skyrmion-Antiskyrmion 的自旋电子应用的磁性 Skyrmions 和 Antiskyrmions 的室温共存相的纳米级特征

理论研究预测,磁性斯格明子和反斯格明子之间的相互作用会产生各种性质,例如独特的排列、配对湮灭、拓扑变换以及不只出现在斯格明子或反斯格明子中的直线和次摆线运动。最近,实验研究发现,具有各向异性 Dzyaloshinskii-Moriya 相互作用的 Heusler 材料在 268 K 时显示出共存相,以及面内磁场诱导的椭圆形斯格明子和方形反斯格明子的拓扑变换。因此,通过实验观察共存相和拓扑变换对于开发基于skyrmion-antiskyrmion的自旋电子学可能是有希望的。然而,这种相互作用和详细的转化机制仍未揭示和不清楚,分别。利用洛伦兹透射电子显微镜实验和微磁模拟,我们全面研究了 Heusler 材料 Mn 中斯格明子和反斯格明子共存相的性质1.31.00.1锡。偶极相互作用(样品厚度)的控制使我们能够实现室温共存相。我们发现拓扑变换是随机发生的而不是确定性的,这可以通过考虑磁点群和面内磁场的方向来解释。我们进一步观察到斯格明子和反斯格明子之间的各向同性远程排斥相互作用,这与传统的相对位置和螺旋度相关的短程成对相互作用的想法相反,斯格明子和反斯格明子的变形取决于它们之间的距离。我们的模拟表明,变形对磁能和能量景观产生重大影响,有助于相互作用。
更新日期:2022-08-18
down
wechat
bug